Publication Cover
Radiation Effects and Defects in Solids
Incorporating Plasma Science and Plasma Technology
Volume 179, 2024 - Issue 5-6
61
Views
0
CrossRef citations to date
0
Altmetric
Articles

PKA Energy dependence of defect evolution in ion irradiated Fe-15Ni-15Cr alloy – a successive cascade study using molecular dynamics simulation

, , , ORCID Icon &
Pages 781-798 | Received 07 Sep 2023, Accepted 24 Jan 2024, Published online: 13 Feb 2024

References

  • Was, G.S. Fundamentals of Radiation Materials Science: Metals and Alloys; Springer: Berlin Heidelberg, 2007. https://books.google.co.in/books?id=0N06swAJI0AC.
  • Stoller, R.E.; Stoller, R.E.; Kumar, A.S. Effects of Radiation on Materials: 15th International Symposium, ASTM, 1992. https://books.google.co.in/books?id=SuRjaV0MVdEC.
  • Bacon, D.J.; Diaz de la Rubia, T. Molecular Dynamics Computer Simulations of Displacement Cascades in Metals. J. Nucl. Mater. 1994, 216, 275–290.
  • Gayathri, N.; Das, K.; Mukherjee, P.; Menon, R.; Nabhiraj, P.Y. Observation of Radiation Enhanced Phase Formation and Subsequent Dissolution at Very High Doses in Ar9 + ion Irradiated Ti-Modified Stainless Steel. Radiat. Phys. Chem 2019, 165, 108379.
  • Mukherjee, P.; Sarkar, A.; Bhattacharya, M.; Gayathri, N.; Barat, P. Post-irradiated Microstructural Characterisation of Cold-Worked SS316L by X-ray Diffraction Technique. J. Nucl. Mater 2009, 395, 37–44.
  • Dey, S.; Gayathri, N.; Mukherjee, P. Depth Profiling of ion-Induced Damage in D9 Alloy Using X-ray Diffraction, Radiat. Eff. Defects Solids 2018, 173, 300–317.
  • Foreman, A.J.E.; Phythian, W.J.; English, C.A. The Molecular Dynamics Simulation of Irradiation Damage Cascades in Copper Using a Many-Body Potential. Philos. Mag. A 1992, 66, 671–695.
  • Stoller, R.E. Role of Cascade Energy and Temperature in Primary Defect Formation in Iron. J. Nucl. Mater 2000, 276, 22–32.
  • Boev, A.O.; Zolnikov, K.P.; Nelasov, I.V.; Lipnitskii, A.G. Molecular Dynamics Simulation of Primary Radiation Damage in Vanadium and Alloy V-4Ti. J. Phys. Conf. Ser 2019, 1147, 12087.
  • Was, G.S.; Allen, T. Radiation-induced Segregation in Multicomponent Alloys: Effect of Particle Type. Mater. Charact 1994, 32, 239–255.
  • Séran, J.-L.; Flem, M.L. 8 - Irradiation-Resistant Austenitic Steels as Core Materials for Generation IV Nuclear Reactors, in: P. Yvon, Ed.Structural Material Generation IV Nuclear Reactors, Woodhead Publishing: United Kingdom, 2017: pp. 285–328.
  • Was, G.S.; Ukai, S. Chapter 8 - Austenitic Stainless Steels, in: G.R. Odette, S.J. Zinkle (Eds.), Struct. Alloy. Nucl. Energy Appl., Elsevier, Boston, 2019: pp. 293–347.
  • Mathew, M.; Gopal, K.A.; S, M.; Panigrahi, B.; Bhaduri, A.K.; Jayakumar, T. Development of IFAC-1 SS: An Advanced Austenitic Stainless Steel for Cladding and Wrapper Tube Applications in Sodium-Cooled Fast Reactors. Adv. Mater. Res 2013, 794, 749–756.
  • Prasad Reddy, G.V.; Karthik, V. Core Materials for Sodium-Cooled Fast Reactors: Past to Present and Future Prospects. Mater. Perform. Charact 2021, 11, 607–657.
  • Ullah, M.W.; Zhang, Y.; Sellami, N.; Debelle, A.; Bei, H.; Weber, W.J. Evolution of Irradiation-Induced Strain in an Equiatomic NiFe Alloy. Scr. Mater 2017, 140, 35–39.
  • Garner, F.A. 4.02 - Radiation Damage in Austenitic Steels, in: R.J.M. Konings (Ed.), Comprehensive Nuclear Materials, Elsevier, Oxford, 2012: pp. 33–95.
  • Terentyev, D.A.; Malerba, L.; Chakarova, R.; Nordlund, K.; Olsson, P.; Rieth, M.; Wallenius, J. Displacement Cascades in Fe–Cr: A Molecular Dynamics Study. J. Nucl. Mater 2006, 349, 119–132.
  • Levine, S.M.; Pareige, C.; Jiao, Z.; Edmondson, P.D.; Was, G.S.; Zinkle, S.J.; Bhattacharya, A. Phase Instabilities in Austenitic Steels During Particle Bombardment at High and low Dose Rates. Mater. Des 2022, 217, 110588.
  • Gubicza, J. X-Ray Line Profile Analysis in Materials Science, 2014.
  • Mandal, S.; Sharma, S.K.; Gayathri, N.; Sudarshan, K.; Mukherjee, P.; Pujari, P.K.; Menon, R.; Nabhiraj, P.Y.; Sagdeo, A. Synchrotron GIXRD and Slow Positron Beam Characterisation of Ar ion Irradiated Pure V and V-4Cr-4Ti Alloy: Candidate Structural Material for Fusion Reactor Application. Fusion Eng. Des 2020, 154, 111518.
  • Saha, U.; Dutta, A.; Konkati, C.; Chakraborty, S.; Dey, S.; Chauhan, A.; Srivastava, S.; Gayathri, N.; Mukherjee, P. Microstructure and Defect Evolution in Oxygen ion-Irradiated Pure Nickel – Insights from Experimental Probes and Molecular Dynamics Simulations. Mater. Chem. Phys 2023, 305, 127916.
  • Dutta, A.; Das, K.; Gayathri, N.; Menon, R.; Nabhiraj, P.Y.; Mukherjee, P. Effect of Ar9+Irradiation on Zr-1Nb-1Sn-0.1Fe Alloy Characterized by Grazing Incidence X-ray Diffraction Technique. Radiat. Phys. Chem 2018, 144, 125–131.
  • Tian, J.; Feng, Q.; Zheng, J.; Liu, X.; Zhou, W. Radiation Damage Buildup and Basal Vacancy Cluster Formation in hcp Zirconium: A Molecular Dynamics Study. J. Nucl. Mater 2021, 551, 152920.
  • Granberg, F.; Nordlund, K.; Ullah, M.W.; Jin, K.; Lu, C.; Bei, H.; Wang, L.M.; Djurabekova, F.; Weber, W.J.; Zhang, Y. Mechanism of Radiation Damage Reduction in Equiatomic Multicomponent Single Phase Alloys. Phys. Rev. Lett 2016, 116, 1–8.
  • Ullah, M.W.; Aidhy, D.S.; Zhang, Y.; Weber, W.J. Damage Accumulation in ion-Irradiated Ni-Based Concentrated Solid-Solution Alloys. Acta Mater. 2016, 109, 17–22.
  • Jin, M.; Cao, P.; Short, M.P. Thermodynamic Mixing Energy and Heterogeneous Diffusion Uncover the Mechanisms of Radiation Damage Reduction in Single-Phase Ni-Fe Alloys. Acta Mater. 2018, 147, 16–23.
  • Ziegler, J.F.; Ziegler, M∼D; Biersack, J∼P. SRIM - The Stopping and Range of Ions in Matter (2010). Nucl. Instrum. Methods Phys. Res. B 2010, 268, 1818–1823.
  • Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys 1995, 117, 1–19.
  • Béland, L.K.; Tamm, A.; Mu, S.; Samolyuk, G.D.; Osetsky, Y.N.; Aabloo, A.; Klintenberg, M.; Caro, A.; Stoller, R.E. Accurate Classical Short-Range Forces for the Study of Collision Cascades in Fe–Ni–Cr, Comput. Phys. Commun 2017, 219, 11–19.
  • Nordlund, K. Molecular Dynamics Simulation of ion Ranges in the 1-100 keV Energy Range. Comput. Mater. Sci 1995, 3, 448–456.
  • Nordlund, K.; Ghaly, M.; Averback, R. Defect Production in Collision Cascades in Elemental Semiconductors and fcc Metals. Phys. Rev. B - Condens. Matter Mater. Phys 1998, 57, 7556–7570.
  • Stoller, R.E.; Toloczko, M.B.; Was, G.S.; Certain, A.G.; Dwaraknath, S.; Garner, F.A. On the use of SRIM for Computing Radiation Damage Exposure. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 2013, 310, 75–80.
  • Stukowski, A. Visualization and Analysis of Atomistic Simulation Data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 15012.
  • Dai, Y.; Jia, X.; Chen, J.C.; Sommer, W.F.; Victoria, M.; Bauer, G.S. Microstructure of Both as-Irradiated and Deformed 304L Stainless Steel Irradiated with 800 MeV Protons. J. Nucl. Mater. 2001, 296, 174–182.
  • Schibli, R.; Schäublin, R. On the Formation of Stacking Fault Tetrahedra in Irradiated Austenitic Stainless Steels – A Literature Review. J. Nucl. Mater 2013, 442, S761–S767.
  • Stukowski, A. Structure Identification Methods for Atomistic Simulations of Crystalline Materials. Model. Simul. Mater. Sci. Eng 2012, 20, 45021.
  • Faken, D.; Jónsson, H. Systematic Analysis of Local Atomic Structure Combined with 3D Computer Graphics. Comput. Mater. Sci. 1994, 2, 279–286.
  • Stukowski, A.; Bulatov, V.V.; Arsenlis, A. Automated Identification and Indexing of Dislocations in Crystal Interfaces. Model. Simul. Mater. Sci. Eng. 2012, 20, 85007.
  • Sizmann, R. The Effect of Radiation upon Diffusion in Metals. J. Nucl. Mater 1978, 69–70, 386–412.
  • Ke, J.H.; Reese, E.R.; Marquis, E.A.; Odette, G.R.; Morgan, D. Flux Effects in Precipitation Under Irradiation – Simulation of Fe-Cr Alloys. Acta Mater. 2019, 164, 586–601. https://doi.org/10.1016/j.actamat.2018.10.063

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.