Publication Cover
Radiation Effects and Defects in Solids
Incorporating Plasma Science and Plasma Technology
Volume 179, 2024 - Issue 5-6
29
Views
0
CrossRef citations to date
0
Altmetric
Articles

Experimental features and radiation shielding performances of newly produced Ni-based superalloys

, &
Pages 840-859 | Received 27 Nov 2023, Accepted 11 Feb 2024, Published online: 30 Jun 2024

References

  • Singh, V.P.; Badiger, N.M. An Investigation on Gamma and Neutron Shielding Efficiency of Lead-Free Compounds and Alloys. Indian J. Pure Appl. Phys. 2016, 54, 443–448. doi:10.56042/ijpap.v54i7.3687.
  • Qader, I.N.; Ercan, E.; Orhan, A. Effect of Boron Element Additions on Microstructure, Biocompatibility, and Thermodynamic Parameters of NiTi Shape Memory Alloy. JOM 2022, 74, 4402–4409. doi:10.1007/s11837-022-05470-2.
  • Aygun, M.; Aygun, Z.; Ercan, E. Radiation Protection Efficiency of Newly Produced W-Based Alloys: Experimental and Computational Study. Radiat. Phys. Chem. 2023, 212, 111147. doi:10.1016/j.radphyschem.2023.111147.
  • Aygun, Z.; Aygun, M. Evaluation of Radiation Shielding Potentials of Ni-Based Alloys, Inconel-617 and Incoloy-800HT, Candidates for High Temperature Applications Especially for Nuclear Reactors, by EpiXS and Phy-X/PSD Codes. J. Polytech. 2023, 26 (2), 795–801. doi:10.2339/politeknik.1004657.
  • Aygun, Z.; Aygun, M. Density-Dependent Analytical Equations of Radiation Shielding Parameters for Super Alloys by Linear Regression Analysis. Nucl. Phys. At. Energy 2023, 24 (1), 40–50. doi:10.15407/jnpae2023.01.040.
  • Aygun, Z.; Aygun, M. A Computational Study on Radiation Shielding Potentials of Eutectic High Entropy Alloys. Eastern Anatol. J. Sci. 2023, 9 (1), 7–15. https://dergipark.org.tr/en/pub/eajs/issue/78712/1297544.
  • Ekinci, N.; Kavaz, E.; Aygün, B.; Perişanoğlu, U. Gamma Ray Shielding Capabilities of Rhenium-Based Superalloys. Radiat. Eff. Def. Solids 2019, 174 (5–6), 435–451. doi:10.1080/10420150.2019.1596110.
  • El-Agawany, F.I.; Ekinci, N.; Mahmoud, K.A.; Sarıtaş, S.; Aygün, B.; Ahmed, E.M.; Rammah, Y.S. Gamma-Ray Shielding Capacity of Different B4C-, Re-, and Ni-Based Superalloys. Eur. Phys. J. Plus 2021, 136, 527. doi:10.1140/epjp/s13360-021-01498-6.
  • Zhang, W.; Qi, Y.; Zhang, L.; Tang, Y.; Qi, C.; Shen, Q.; Ma, Y.; Wang, B. The Effect of Alloy Elements on Corrosion and Oxidative Resistance of W-Based Alloy Films. Surface Coatings Technol. 2022, 434, 128165. doi:10.1016/j.surfcoat.2022.128165.
  • Alzahrani, J.S.; Alrowaili, Z.A.; Eke, C.; Mahmoud, Z.M.M.; Mutuwong, C.; Al-Buriahi, M.S. Nuclear Shielding Properties of Ni-, Fe-, Pb-, and W-Based Alloys. Radiat. Phys. Chem. 2022, 195, 110090. doi:10.1016/j.radphyschem.2022.110090.
  • Sayyed, M.I.; Mohammed, F.Q.; Mahmoud, K.A.; Lacomme, E.; Kaky, K.M.; Khandaker, M.U.; Faruque, M.R.I. Evaluation of Radiation Shielding Features of Co and Ni-Based Superalloys Using MCNP-5 Code: Potential Use in Nuclear Safety. Appl. Sci. 2020, 10, 7680. doi:10.3390/app10217680.
  • Aygun, Z.; Aygun, M. A Theoretical Study on Radiation Shielding Characteristics of Magnetic Shielding Alloys, Ni80Fe15Mo5 and Ni77Fe14Cu5Mo4, by Determining the Photon Attenuation Parameters in the Energy Range of 15keV-100 GeV. Karaelmas Sci. Engineer. J. 2021, 11 (2), 165–173. https://dergipark.org.tr/en/pub/karaelmasfen/issue/66240/900452.
  • Zhuang, Y.X.; Zhang, X.L.; Gu, X.Y. Effect of Molybdenum on Phases, Microstructure and Mechanical Properties of Al0.5CoCrFeMo Ni High Entropy Alloys. J. Alloys Comp. 2018, 743, 514–522. doi:10.1016/j.jallcom.2018.02.003.
  • Sakar, E.; Ozpolat, O.F.; Alım, B.; Sayyed, M.I.; Kurudirek, M. Phy-X / PSD: Development of a User Friendly Online Software for Calculation of Parameters Relevant to Radiation Shielding and Dosimetry. Radiat. Phys. Chem. 2020, 166, 108496. doi:10.1016/j.radphyschem.2019.108496.
  • Lyu, J.; Kashkarov, E.; Travitzky, N.; Syrtanov, M.; Lider, A. Sintering of MAX-Phase Materials by Spark Plasma and Other Methods. J. Mater. Sci. 2021, 56, 1980–2015. doi:10.1007/s10853-020-05359-y.
  • Joseph, J.; Jarvis, T.; Wu, X.; Stanford, N.; Hodgson, P.; Fabijanic, D.M. Comparative Study of the Microstructures and Mechanical Properties of Direct Laser Fabricated and Arc-Melted AlxCoCrFeNi High Entropy Alloys. Mater. Sci. Engineer. A 2015, 633, 184–193. doi:10.1016/j.msea.2015.02.072.
  • Cieslak, J.; Tobola, J.; Berent, K.; Marciszko, M. Phase Composition of AlxFeNiCrCo High Entropy Alloys Prepared by Sintering and Arc-Melting Methods. J. Alloys Comp. 2018, 740, 264–272. doi:10.1016/j.jallcom.2017.12.333.
  • Qader, I.N.; Ercan, E.; Faraj, B.A.M.; Kok, M.; Dagdelen, F.; Aydogdu, Y. The Influence of Time-Dependent Aging Process on the Thermodynamic Parameters and Microstructures of Quaternary Cu79–Al12–Ni4–Nb5 (wt%) Shape Memory Alloy. Iranian J. Sci. Tech. Trans. A: Sci. 2020, 44 (3), 903–910. doi:10.1007/s40995-020-00876-6.
  • Xiang, C.; Han, E.H.; Zhang, Z.M.; Fu, H.M.; Wang, J.Q.; Zhang, H.F.; Hu, G.D. Design of Single-Phase High-Entropy Alloys Composed of Low Thermal Neutron Absorption Cross-Section Elements for Nuclear Power Plant Application. Intermetal 2019, 104, 143–153. doi:10.1016/j.intermet.2018.11.001.
  • Jackson, D.F.; Hawkes, D.J. X-Ray Attenuation Coefficients of Elements and Mixtures. Phys. Reports 1981, 70, 169–233.
  • Han, I.; Demir, L. Studies on Effective Atomic Numbers, Electron Densities from Mass Attenuation Coefficients in TixCo1−x and CoxCu1−x Alloys. Nucl. Instr. Methods B 2009, 267, 3505–3510. doi:10.1016/j.nimb.2009.08.022.
  • Manjunatha, H.C. A Study of Gamma Attenuation Parameters in Poly Methyl Methacrylate and Kapton. Radiat. Phys. Chem. 2017, 137, 254–259. doi:10.1016/j.radphyschem.2016.01.024.
  • Harima, Y.; Sakamoto, Y.; Tanaka, S.; Kawai, M. Validity of the Geometric-Progression Formula in Approximating Gamma-Ray Buildup Factors. Nucl. Sci. Engineer. 1986, 94, 24–35.
  • Harima, Y. An Historical Review and Current Status of Buildup Factor Calculations and Applications. Radiat. Phys. Chem. 1993, 41 (4–5), 631–672.
  • ANSI/ANS 6.4.3. Gamma-Ray Attenuation Coefficients and Buildup Factors for Engineering Materials. American Nuclear Society, La Grange Park, IL, 1991.
  • Ercan, E.; Dagdelen, F.; Qader, I. Effect of Tantalum Contents on Transformation Temperatures, Thermal Behaviors and Microstructure of CuAlTa HTSMAs. J. Thermal Analy. Calorimetry 2020, 139, 29–36. doi:10.1007/s10973-019-08418-y.
  • Ercan, E. Effects of Quenching Temperatures on Microstructure, Phase Transformation Characteristics and Shape Memory Behaviors of CuAlTa and CuAlTaNb HTSMAs. Trans. Indian Inst. Metals 2022, 75, 2041–2050. doi:10.1007/s12666-022-02579-5.
  • Dinsdale, A.T. SGTE Data for Pure Elements. Calphad 1991, 15, 317–425.
  • Slater, J.C. Atomic Radii in Crystals. J. Chem. Phys. 1964, 41 (10), 3199–3204.
  • Cui, Y.; Jin, Z.; Lu, X. Experimental Study and Thermodynamic Assessment of the Ni-Mo-Ta Ternary System. Metallurgical Mater. Transactions A 1999, 30 (11), 2735–2744. doi:10.1007/s11661-999-0110-0.
  • Dagdelen, F.; Aydogdu, Y. Transformation Behavior in NiTi–20Ta and NiTi–20Nb SMAs. J. Thermal Analy. Calorimetry 2019, 136 (2), 637–642. doi:10.1007/s10973-018-7635-7.
  • Hou, Q.Q.; Huang, K.; Luo, L.M.; Tan, X.Y.; Zan, X.; Xu, Q.; Zhu, X.Y.; Wu, Y.C. Microstructure and its High Temperature Oxidation Behavior of W-Cr Alloys Prepared by Spark Plasma Sintering. Materialia 2019, 6, 100332. doi:10.2139/ssrn.3317057.
  • Zhong, Q.; Wei, K.; Yue, X.; Zhou, R.; Zeng, X. Powder Densification Behavior and Microstructure Formation Mechanism of W-Ni Alloy Processed by Selective Laser Melting. J Alloys Comp. 2022, 908, 164609. doi:10.1016/j.jallcom.2022.164609.
  • Scherrer, P. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen 1918, 26, 98–100.
  • Qader, I.N.; Öner, E.; Kok, M.; Mohammed, S.S.; Dağdelen, F.; Kanca, M.S.; Aydoğdu, Y. Mechanical and Thermal Behavior of Cu84−xAl13Ni3Hfx Shape Memory Alloys. Iranian J. Sci. Tech. Trans. A Sci. 2021, 45, 343–349. doi:10.1007/s40995-020-01008-w.
  • Rabiei, M.; Palevicius, A.; Monshi, A.; Nasiri, S.; Vilkauskas, A.; Janusas, G. Comparing Methods for Calculating Nano Crystal Size of Natural Hydroxyapatite Using X-Ray Diffraction. Nanomaterials 2020, 10, 1627. doi:10.3390/nano10091627.
  • Aygun, Z.; Aygun, M. Spectroscopic Analysis of Ahlat Stone (Ignimbrite) and Pumice Formed by Volcanic Activity. Spectrochim. Acta A 2016, 166 (5), 73–78. doi:10.1016/j.saa.2016.05.018.
  • Berger, M.J.; Hubbell, J.H. XCOM: Photon Cross Sections Database, Web Version 1.2. National Institute of Standards and Technology: Gaithersburg, MD, 1987. http://physics.nist.gov/xcom.
  • Aygun, Z.; Aygun, M. Radiation Shielding Potentials of Rene Alloys by Phy-X/PSD Code. Acta Phys. Polonica A 2022, 141 (5), 507–515. doi:10.12693/APhysPolA.141.507.
  • Aygun, Z. Study on Radiation Shielding Characteristics of Refractory High Entropy Alloys by EpiXS Code. Acta Phys. Polonica. 2023, 143, 66–74. http://appol.ifpan.edu.pl/index.php/appa/article/view/13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.