108
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Quantitative characterization of 3D pore structures and percolation characteristics in bioturbated reservoir media based on X-ray micro-CT: a case study of the Neogene Sanya Formation in the Qiongdongnan Basin, Northern South China Sea

ORCID Icon, , , , , , , & show all

References

  • Abdlmutalib, A. J., Ayranci, K., Yassin, M. A., Hussaini, S. R., Abdullatif, O. A., & Humphrey, J. D. (2022). Impact of sedimentary fabrics on small-scale permeability variations within fine-grained sediments: Early Silurian Qusaiba Member, Northern Saudi Arabia. Marine and Petroleum Geology, 139, 105607. https://doi.org/10.1016/j.marpetgeo.2022.105607
  • Alqubalee, A., Muharrag, J., Salisu, A. M., & Eltom, H. (2022). The negative impact of Ophiomorpha on reservoir quality of channelized deposits in mixed carbonate siliciclastic setting: The case study of the Dam Formation, Saudi Arabia. Marine and Petroleum Geology, 140, 105666. https://doi.org/10.1016/j.marpetgeo.2022.105666
  • An, S., Yao, J., Yang, Y., Zhang, L., Zhao, J., & Gao, Y. (2016). Influence of pore structure parameters on flow characteristics based on a digital rock and the pore network model. Journal of Natural Gas Science and Engineering, 31, 156–163. https://doi.org/10.1016/j.jngse.2016.03.009
  • Baniak, G. M., La Croix, A. D., & Gingras, M. K. (2022). Recent advancements in characterizing permeability and porosity distributions in bioturbated flow media. Earth-Science Reviews, 232, 104162. https://doi.org/10.1016/j.earscirev.2022.104162
  • Baniak, G. M., La Croix, A. D., Polo, C. A., Playter, T. L., Pemberton, S. G., & Gingras, M. K. (2014). Associating X-Ray microtomography with permeability contrasts in bioturbated media. Ichnos, 21(4), 234–250. https://doi.org/10.1080/10420940.2014.958224
  • Bear, J. (1972). Dynamics of fluids in porous media. Elsevier.
  • Ben-Awuah, J., & Eswaran, P. (2015). Effect of bioturbation on reservoir rock quality of sandstones: A case from the Baram Delta, offshore Sarawak, Malaysia. Petroleum Exploration and Development, 42(2), 223–231. https://doi.org/10.1016/s1876-3804(15)30009-4
  • Bera, B., Mitra, S. K., & Vick, D. (2011). Understanding the micro structure of Berea sandstone by the simultaneous use of micro-computed tomography (micro-CT) and focused ion beam-scanning electron microscopy (FIB-SEM). Micron (Oxford, England: 1993), 42(5), 412–418. https://doi.org/10.1016/j.micron.2010.12.002
  • Bird, M. B., Butler, S. L., Hawkes, C. D., & Kotzer, T. (2014). Numerical modeling of fluid and electrical currents through geometries based on synchrotron X-ray tomographic images of reservoir rocks using Avizo and COMSOL. Computers & Geosciences, 73, 6–16. https://doi.org/10.1016/j.cageo.2014.08.009
  • Blunt, M. J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., & Pentland, C. (2013). Pore-scale imaging and modelling. Advances in Water Resources, 51, 197–216. https://doi.org/10.1016/j.advwatres.2012.03.003
  • Bromley, R. G., & Pedersen, G. K. (2008). Ophiomorpha irregulaire, Mesozoic trace fossil that is either well understood but rare in outcrop or poorly understood but common in core. Palaeogeography, Palaeoclimatology, Palaeoecology, 270(3–4), 295–298. https://doi.org/10.1016/j.palaeo.2008.07.017
  • Bultreys, T., De Boever, W., & Cnudde, V. (2016). Imaging and image-based fluid transport modeling at the pore scale in geological materials: A practical introduction to the current state-of-the-art. Earth-Science Reviews, 155, 93–128. https://doi.org/10.1016/j.earscirev.2016.02.001
  • Cao, H., Jin, S., Hou, M., Chen, S., Liu, Y., & Chen, A. (2022). Astronomical cycles calibrated the sea-level sequence durations of Late Miocene to Pliocene in Qiongdongnan Basin, south China sea. Marine and Petroleum Geology, 143, 105813. https://doi.org/10.1016/j.marpetgeo.2022.105813
  • Chalmers, G. R., Bustin, R. M., & Power, I. M. (2012). Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bulletin, 96(6), 1099–1119. https://doi.org/10.1306/10171111052
  • Chandler, R., Koplik, J., Lerman, K., & Willemsen, J. F. (1982). Capillary displacement and percolation in porous media. Journal of Fluid Mechanics, 119, 249–267. https://doi.org/10.1017/S0022112082001335
  • Clarkson, C. R., Freeman, M., He, L., Agamalian, M., Melnichenko, Y. B., Mastalerz, M., Bustin, R. M., Radliński, A. P., & Blach, T. P. (2012). Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis. Fuel, 95, 371–385. https://doi.org/10.1016/j.fuel.2011.12.010
  • Clarkson, C. R., Wood, J. M. M., Burgis, S. E. E., Aquino, S. D. D., & Freeman, M. (2012). Nanopore-structure analysis and permeability predictions for a tight gas siltstone reservoir by use of low-pressure adsorption and mercury-intrusion techniques. SPE Reservoir Evaluation & Engineering, 15(6), 648–661. https://doi.org/10.2118/155537-PA
  • Cnudde, V., & Boone, M. N. (2013). High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Science Reviews, 123, 1–17. https://doi.org/10.1016/j.earscirev.2013.04.003
  • Curtis, M. E., Sondergeld, C. H., Ambrose, R. J., & Rai, C. S. (2012). Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. AAPG Bulletin, 96(4), 665–677. https://doi.org/10.1306/08151110188
  • de Gibert, J. M., Netto, R. G., Tognoli, F. M., & Grangeiro, M. E. (2006). Commensal worm traces and possible juvenile thalassinidean burrows associated with Ophiomorpha nodosa, Pleistocene, southern Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 230(1–2), 70–84. https://doi.org/10.1016/j.palaeo.2005.07.008
  • Dey, J., & Sen, S. (2017). Impact of bioturbation on reservoir quality and production – A review. Journal Geological Society, 89(4), 460–470. https://doi.org/10.1007/s12594-017-0629-4
  • Dong, H., & Blunt, M. J. (2009). Pore-network extraction from micro-computerized-tomography images. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 80(3 Pt 2), 036307. https://doi.org/10.1103/PhysRevE.80.036307
  • Eltom, H. A., Alqubalee, A., & Yassin, M. A. (2021). Potential overlooked bioturbated reservoir zones in the shallow marine strata of the Hanifa Formation in central Saudi Arabia. Marine and Petroleum Geology, 124, 104798. https://doi.org/10.1016/j.marpetgeo.2020.104798
  • Friesen, O. J., Dashtgard, S. E., Miller, J., Schmitt, L., & Baldwin, C. (2017). Permeability heterogeneity in bioturbated sediments and implications for waterflooding of tight-oil reservoirs, Cardium Formation, Pembina Field, Alberta, Canada. Marine and Petroleum Geology, 82, 371–387. https://doi.org/10.1016/j.marpetgeo.2017.01.019
  • Giannetti, A., & Monaco, P. (2015). Definition of sequences through ichnocoenoses and taphofacies: An example from the Sácaras Formation (early Cretaceous, eastern Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 438, 70–80. https://doi.org/10.1016/j.palaeo.2015.08.002
  • Gingras, M. K., Baniak, G., Gordon, J., Hovikoski, J., Konhauser, K. O., La Croix, A., Lemiski, R., Mendoza, C., Pemberton, S. G., Polo, C., & Zonneveld, J.-P. (2012). Porosity and permeability in bioturbated sediments. In D. Knaust &R. G. Bromley (Eds.), Trace fossils as indicators of sedimentary environments, developments in sedimentology (Vol. 64, pp. 837–868). Elsevier. https://doi.org/10.1016/b978-0-444-53813-0.00027-7
  • Gingras, M. K., Mendoza, C. A., & Pemberton, S. G. (2004). Fossilized worm burrows influence the resource quality of porous media. AAPG Bulletin, 88(7), 875–883. https://doi.org/10.1306/01260403065
  • Gingras, M. K., Pemberton, S. G., Mendoza, C. A., & Henk, F. (1999). Assessing the anisotropic permeability of Glossifungites surfaces. Petroleum Geoscience, 5(4), 349–357. https://doi.org/10.1144/petgeo.5.4.349
  • Golab, J. A., Smith, J. J., Clark, A. K., & Blome, C. D. (2017). Effects of Thalassinoides ichnofabrics on the petrophysical properties of the lower Cretaceous lower Glen Rose Limestone, Middle Trinity Aquifer, Northern Bexar County, Texas. Sedimentary Geology, 351, 1–10. https://doi.org/10.1016/j.sedgeo.2017.02.001
  • Golab, J. A., Smith, J. J., Clark, A. K., & Morris, R. R. (2017). Bioturbation-influenced fluid pathways within a carbonate platform system: The lower Cretaceous (Aptian–Albian) Glen Rose Limestone. Palaeogeography, Palaeoclimatology, Palaeoecology, 465, 138–155. https://doi.org/10.1016/j.palaeo.2016.10.025
  • Howard, J. D. (1968). X-ray radiography for examination of burrowing in sediments by marine invertebrate organisms. Sedimentology, 11(3–4), 249–258. https://doi.org/10.1111/j.1365-3091.1968.tb00855.x
  • Huang, X., Bandilla, K. W., & Celia, M. A. (2015). Multi-physics pore-network modeling of two-phase shale matrix flows. Transport in Porous Media, 111(1), 123–141. https://doi.org/10.1007/s11242-015-0584-8
  • Ju, Y., Wang, J., Gao, F., & Xie, H. (2014). Lattice-Boltzmann simulation of microscale CH4 flow in porous rock subject to force-induced deformation. Chinese Science Bulletin, 59(26), 3292–3303. https://doi.org/10.1007/s11434-014-0465-5
  • Ketcham, R. A., & Carlson, W. D. (2001). Acquisition, optimization and interpretation of X-ray computed tomographic imagery: Applications to the geosciences. Computers & Geosciences, 27(4), 381–400. https://doi.org/10.1016/s0098-3004(00)00116-3
  • Knackstedt, M. A., Latham, S., Madadi, M., Sheppard, A., Varslot, T., & Arns, C. (2009). Digital rock physics: 3D imaging of core material and correlations to acoustic and flow properties. The Leading Edge, 28(1), 28–33. https://doi.org/10.1190/1.3064143
  • Knaust, D. (2009). Ichnology as a tool in carbonate reservoir characterization: A case study from the Permian – Triassic Khuff Formation in the Middle East. GeoArabia, 14(3), 17–38. https://doi.org/10.2113/geoarabia140317
  • Knaust, D. (2012). Methodology and techniques. In D. Knaust & R. G. Bromley (Eds.), Trace fossils as indicators of sedimentary environments, developments in sedimentology (Vol. 64, pp. 245–271). Elsevier. https://doi.org/10.1016/b978-0-444-53813-0.00009-5
  • Knaust, D. (2017). Methodology in Ichnological Core Logging. In D. Knaust (Ed), Atlas of trace fossils in well core: Appearance, taxonomy and interpretation (pp. 21–26). Springer. https://doi.org/10.1007/978-3-319-49837-9
  • Knaust, D., Dorador, J., & Rodríguez-Tovar, F. J. (2020). Burrowed matrix powering dual porosity systems – A case study from the Maastrichtian chalk of the Gullfaks Field, Norwegian North Sea. Marine and Petroleum Geology, 113, 104158. https://doi.org/10.1016/j.marpetgeo.2019.104158
  • La Croix, A. D., Gingras, M. K., Dashtgard, S. E., & Pemberton, S. G. (2012). Computer modeling bioturbation: The creation of porous and permeable fluid-flow pathways. AAPG Bulletin, 96(3), 545–556. https://doi.org/10.1306/07141111038
  • La Croix, A. D., Gingras, M. K., Pemberton, S. G., Mendoza, C. A., MacEachern, J. A., & Lemiski, R. T. (2013). Biogenically enhanced reservoir properties in the Medicine Hat gas field, Alberta, Canada. Marine and Petroleum Geology, 43, 464–477. https://doi.org/10.1016/j.marpetgeo.2012.12.002
  • La Croix, A. D., MacEachern, J. A., Ayranci, K., Hsieh, A., & Dashtgard, S. E. (2017). An ichnological-assemblage approach to reservoir heterogeneity assessment in bioturbated strata: Insights from the Lower Cretaceous Viking Formation, Alberta, Canada. Marine and Petroleum Geology, 86, 636–654. https://doi.org/10.1016/j.marpetgeo.2017.06.024
  • Leaman, M., & McIlroy, D. (2016). Three-dimensional morphological and permeability modelling of Diplocraterion. Ichnos, 24(1), 51–63. https://doi.org/10.1080/10420940.2016.1232650
  • Leaman, M., McIlroy, D., Herringshaw, L. G., Boyd, C., & Callow, R. H. T. (2015). What does Ophiomorpha irregulaire really look like? Palaeogeography, Palaeoclimatology, Palaeoecology, 439, 38–49. https://doi.org/10.1016/j.palaeo.2015.01.022
  • Li, Z., Shen, X., Qi, Z., & Hu, R. (2018). Study on the pore structure and fractal characteristics of marine and continental shale based on mercury porosimetry, N2 adsorption and NMR methods. Journal of Natural Gas Science and Engineering, 53, 12–21. https://doi.org/10.1016/j.jngse.2018.02.027
  • Liu, J., Pereira, G. G., & Regenauer-Lieb, K. (2014). From characterisation of pore-structures to simulations of pore-scale fluid flow and the upscaling of permeability using microtomography: A case study of heterogeneous carbonates. Journal of Geochemical Exploration, 144, 84–96. https://doi.org/10.1016/j.gexplo.2014.01.021
  • Liu, J., & Regenauer-Lieb, K. (2021). Application of percolation theory to microtomography of rocks. Earth-Science Reviews, 214, 103519. https://doi.org/10.1016/j.earscirev.2021.103519
  • Liu, S., Sang, S., Wang, G., Ma, J., Wang, X., Wang, W., Du, Y., & Wang, T. (2017). FIB-SEM and X-ray CT characterization of interconnected pores in high-rank coal formed from regional metamorphism. Journal of Petroleum Science and Engineering, 148, 21–31. https://doi.org/10.1016/j.petrol.2016.10.006
  • Loucks, R. G., Reed, R. M., Ruppel, S. C., & Jarvie, D. M. (2009). Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12), 848–861. https://doi.org/10.2110/jsr.2009.092
  • Mayo, S., Josh, M., Nesterets, Y., Esteban, L., Pervukhina, M., Clennell, M. B., Maksimenko, A., & Hall, C. (2015). Quantitative micro-porosity characterization using synchrotron micro-CT and xenon K-edge subtraction in sandstones, carbonates, shales and coal. Fuel, 154, 167–173. https://doi.org/10.1016/j.fuel.2015.03.046
  • Migeon, S., Weber, O., Faugeres, J. C., & Saint-Paul, J. (1998). SCOPIX: A new X-ray imaging system for core analysis. Geo-Marine Letters, 18(3), 251–255. https://doi.org/10.1007/s003670050076
  • Miguez-Salas, O., Dorador, J., Rodríguez-Tovar, F. J., & Linares, F. (2022). X-ray microtomography analysis to approach bioturbation’s influence on minor-scale porosity distribution: A novel approach in contourite deposits. Journal of Petroleum Science and Engineering, 208, 109251. https://doi.org/10.1016/j.petrol.2021.109251
  • Monaco, P., Caracuel, J. E., Giannetti, A., Soria Mingorance, J. M., & Yébenes Simón, A. (2009). Thalassinoides and Ophiomorpha as cross-facies trace fossils of crustaceans from shallow-to-deep-water environments: Mesozoic and tertiary examples from Italy and Spain. In A. Garassino, R. M. Feldmann, & G. Teruzzi (Eds.), 3rd Symposium on Mesozoic and Cenozoic Decapod Crustaceans—Museo di Storia Naturale di Milano, May 23–25, 2007 (Vol 35, pp. 79–82). Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano.
  • Netto, R. G., Curran, H. A., Belaústegui, Z., & Tognoli, F. M. (2017). Solving a cold case: New occurrences reinforce juvenile callianassids as the Ophiomorpha puerilis tracemakers. Palaeogeography, Palaeoclimatology, Palaeoecology, 475, 93–105. https://doi.org/10.1016/j.palaeo.2017.03.013
  • Ni, X., Miao, J., Lv, R., & Lin, X. (2017). Quantitative 3D spatial characterization and flow simulation of coal macropores based on μCT technology. Fuel, 200, 199–207. https://doi.org/10.1016/j.fuel.2017.03.068
  • Niu, Y., Cheng, M., Zhang, L., Zhong, J., Liu, S., Wei, D., Xu, Z., & Wang, P. (2022). Bioturbation enhanced petrophysical properties in the Ordovician carbonate reservoir of the Tahe oilfield, Tarim Basin, NW China. Journal of Palaeogeography, 11(1), 31–51. https://doi.org/10.1016/j.jop.2022.01.001
  • Niu, Y., Marshall, J. D., Song, H., Hu, B., Hu, Y., Jin, Y., Zhang, L.-J., Pan, J., & Wu, W. (2020). Ichnofabrics and their roles in the modification of petrophysical properties: A case study of the Ordovician Majiagou Formation, northwest Henan Province, China. Sedimentary Geology, 409, 105773. https://doi.org/10.1016/j.sedgeo.2020.105773
  • Niu, Y., Xu, Z., Liu, S., Zhong, J., Zhao, J., & Wang, P. (2020). Digital characterization and connectivity analysis of microcosmic pore structures of the Ordovician bioturbated carbonate rock reservoirs in Tahe Oilfield. Journal of Palaeogeography (Chinese Edition), 22(4), 785–798. https://doi.org/10.7605/gdlxb.2020.04.053
  • Oliveira de Araújo, O. M., Aguilera, O., Coletti, G., Valencia, F. L., Buatois, L. A., & Lopes, R. (2021). X-ray micro-computed tomography of burrow-related porosity and permeability in shallow-marine equatorial carbonates: A case study from the Miocene Pirabas Formation, Brazil. Marine and Petroleum Geology, 127, 104966. https://doi.org/10.1016/j.marpetgeo.2021.104966
  • Pedersen, G. K., & Bromley, R. G. (2006). Ophiomorpha irregulaire, rare trace fossil in shallow marine sandstones, Cretaceous Atane Formation, West Greenland. Cretaceous Research, 27(6), 964–972. https://doi.org/10.1016/j.cretres.2006.06.001
  • Pereyra, C. A. (2021). Pleistocene Ophiomorpha nodosa from Buenos Aires, Argentina: Paleoenvironmental implications for ghost shrimp trace fossils along South America. Journal of South American Earth Sciences, 108, 103135. https://doi.org/10.1016/j.jsames.2020.103135
  • Raeini, A. Q., Yang, J., Bondino, I., Bultreys, T., Blunt, M. J., & Bijeljic, B. (2019). Validating the generalized pore network model using micro-CT images of two-phase flow. Transport in Porous Media, 130(2), 405–424. https://doi.org/10.1007/s11242-019-01317-8
  • Sheng, J., Yang, X., Li, G., Xu, L., Li, Y., Wang, J., Zhang, C., & Cui, H. (2019). Application of multiscale X-CT imaging digital core technique on observing micro-pore structure of carbonate reservoirs. Geoscience, 33(3), 653–661 + 671. https://doi.org/10.19657/j.geoscience
  • Shi, X., Pan, J., Pang, L., Wang, R., Li, G., Tian, J., & Wang, H. (2020). 3D microfracture network and seepage characteristics of low-volatility bituminous coal based on nano-CT. Journal of Natural Gas Science and Engineering, 83, 103556. https://doi.org/10.1016/j.jngse.2020.103556
  • Silin, D., & Patzek, T. (2006). Pore space morphology analysis using maximal inscribed spheres. Physica A: Statistical Mechanics and Its Applications, 371(2), 336–360. https://doi.org/10.1016/j.physa.2006.04.048
  • Singh, A., Jha, N. K., Mandal, P. P., Esteban, L., & Desai, B. G. (2022). Pore throat characterization of bioturbated heterogeneous sandstone, Bhuj Formation, Kachchh India: An integrated analysis using NMR and HPMI studies. Journal of Petroleum Science and Engineering, 211, 110221. https://doi.org/10.1016/j.petrol.2022.110221
  • Tiwari, P., Deo, M., Lin, C. L., & Miller, J. D. (2013). Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT. Fuel, 107, 547–554. https://doi.org/10.1016/j.fuel.2013.01.006
  • Trabelsi, A., & Beg, M. A. (2000). Characterization and mapping of burrowed and microporous intervals in the Arab D Reservoir, Dukhan Field, Qatar. Paper presented at the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, October 2000. https://doi.org/10.2118/87238-MS
  • Uchman, A. (2009). The Ophiomorpha rudis ichnosubfacies of the Nereites ichnofacies: Characteristics and constraints. Palaeogeography, Palaeoclimatology, Palaeoecology, 276(1–4), 107–119. https://doi.org/10.1016/j.palaeo.2009.03.003
  • Wang, Y., Pu, J., Wang, L., Wang, J., Jiang, Z., Song, Y.-F., Wang, C.-C., Wang, Y., & Jin, C. (2016). Characterization of typical 3D pore networks of Jiulaodong formation shale using nano-transmission X-ray microscopy. Fuel, 170, 84–91. https://doi.org/10.1016/j.fuel.2015.11.086
  • Yang, X., Mehmani, Y., Perkins, W. A., Pasquali, A., Schönherr, M., Kim, K., Perego, M., Parks, M. L., Trask, N., Balhoff, M. T., Richmond, M. C., Geier, M., Krafczyk, M., Luo, L.-S., Tartakovsky, A. M., & Scheibe, T. D. (2016). Intercomparison of 3D pore-scale flow and solute transport simulation methods. Advances in Water Resources, 95, 176–189. https://doi.org/10.1016/j.advwatres.2015.09.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.