75
Views
1
CrossRef citations to date
0
Altmetric
Original

A chemotaxis operon in the bacterium Desulfovibrio gigas is induced under several growth conditions

Full Length Research Paper

, , , &
Pages 56-64 | Received 18 Jul 2005, Published online: 11 Jul 2009

References

  • Postgate JR. The sulphate-reducing bacteria. Cambridge University Press, London 1984
  • Cypionka H. Oxygen respiration by Desulfovibrio species. Ann Rev Microbiol 2000; 54: 827–848
  • Fareleira P, Santos BS, António C, Moradas-Ferreira P, LeGall J, Xavier AV, Santos H. Response of a strict anaerobe to oxygen: Survival strategies in Desulfovibrio gigas. Microbiology 2003; 149: 1513–1522
  • Bren A, Eisenbach M. How signals are heard during bacterial chemotaxis: Protein–protein interactions in sensory signal propagation. J Bacteriol 2000; 182: 6865–6873
  • Hosh JA, Silhavy TJ. Two-component signal transduction. Am Soc Microbiol Press, Washington 1995
  • Djordjevic S, Stock A. Structural analysis of bacterial chemotaxis proteins: Components of a dynamic signaling system. J Struct Biol 1998; 124: 189–200
  • Macnab RM. Genetics and biogenesis of bacterial flagella. Annu Rev Biophys Bioeng 1992; 13: 51–83
  • Armitage JP, Schmitt R. Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti—variations on a theme. Microbiology 1997; 143: 3671–3682
  • Deckers HM, Voordouw G. Identification of a large family of genes for putative chemoreceptor proteins in the ordered library of the Desulfovibrio vulgaris Hildenborough genome. J Bacteriol 1994; 176: 351–358
  • Fu R, Wall JD, Voordouw G. DcrA, a c-type heme-containing methyl-accepting protein from Desulfovibrio vulgaris Hildenborough, senses the oxygen concentration or redox potencial of the environment. J Bacteriol 1994; 176: 344–350
  • Silva G, Oliveira S, Gomes CM, Pacheco I, Liu M-Y, Xavier AV, Teixeira M, LeGall J, Rodrigues-Pousada C. Desulfovibrio gigas neelaredoxin‐a novel superoxide dismutase integrated in a putative oxygen sensory operon of an anaerobe. Eur J Biochem 1999; 259: 235–243
  • Gomes CM, Silva G, Oliveira S, LeGall J, Liu MY, Xavier AV, Rodrigues-Pousada C, Teixeira M. Studies on the redox centers of the terminal oxidase from Desulfovibrio gigas and evidence for its interaction with rubredoxin. J Biol Chem 1997; 272: 22502–22508
  • Sambrook J, Fritsch EF, Maniatis T. Molecular cloning. A laboratory manual. Cold spring harbor lab press, New York 1989
  • Rodrigues R, Valente FMA, Pereira IAC, Oliveira S, Rodrigues-Pousada C. A novel membrane-bound Ech [NiFe] hydrogenase Desulfovibrio gigas. Biochem Biophys Res Commun 2003; 306: 366–375
  • Altschul FS, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucelic Acids Res 1997; 25: 3389–3402
  • Appel RD, Bairoch A, Hochstrasser DF. A new generation of information retrieval tools for biologists: The example of the ExPASy WWW server. Trends Biochem Sci 1994; 19: 258–260
  • Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix. Nucleic Acids Res 1994; 22: 4673–4680
  • Nicholas KB, Nicholas HB, Jr, Deerfield DWII. GeneDoc: Analysis and visualization of genetic variation. EMBNEW NEWS 1997; 4: 14
  • Kumar S, Tamura K, Jakobsen IB, Nei M. MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics 2001; 17: 1244–1245
  • Saitou M, Nei M. The neighbor-joining methods: A new method for constructing phylogenetic trees. Mol Biol Evol 1987; 4: 406–425
  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. Current protocols in molecular Biology. Greene Publishing Associates and Wiley-Interscience, New York 1995
  • Malki S, De Luca G, Fardeau ML, Rousset M, Belaich JP, Dermoun Z. Physiological characteristics and growth behavior of single and double hydrogenase mutants of Desulfovibrio fructosovorans. Arch Microbiol 1997; 167: 38–45
  • Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annu Rev Biochem 2000; 69: 183–215
  • Groves MR, Hanlon N, Turowski P, Hemmings BA, Barford D. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 1999; 96: 99–110
  • Wu J, Li J, Li G, Long DG, Weis RM. The receptor binding site for the methyltransferase of bacterial chemotaxis is distinct from the sites of methylation. Biochemisty 1996; 35: 4984–4993
  • Bilwes AM, Alex LA, Crane BR, Simon MI. Structures of CheA, a signal-transducing histidine kinase. Cell 1999; 96: 131–141
  • Castro HF, Williams NH, Ogram A. Phylogeny of sulfate-reducing bacteria. FEMS Microbiol Ecol 2000; 31: 1–9
  • Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Eisen JA, Ward N, Methe B, Brinkac LM, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Fouts D, Haft DH, Selengut J, Peterson JD, Davidsen TM, Zafar N, Zhou L, Radune D, Dimitrov G, Hance M, Tran K, Khouri H, Gill J, Utterback TR, Feldblyum TV, Wall JD, Voordouw G, Fraser CM. The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 2004; 22: 554–559
  • Porter SL, Warren AV, Martin AC, Armitage JP. The third chemotaxis locus of Rhodobacter sphaeroides is essential for chemotaxis. Mol Microbiol 2002; 46: 1081–1094
  • Boin MA, Austin J, Häse CC. Chemotaxis in Vibrio cholera. FEMS Microbiol Lett 2004; 239: 1–8
  • Ditty JL, Grimm AC, Harwood CS. Identification of a chemotaxis gene region from Pseudomonas putida. FEMS Microbiol Lett 1998; 159: 267–273
  • Mohl DA, Gober JW. Cell cycle-dependent polar localization of chromosome partiotining proteins in Caulobacter crescentus. Cell 1997; 88: 675–684
  • Bourret RB, Stock AM. Molecular information processing: Lessons from bacterial chemotaxis. J Biol Biochem 2002; 277: 9625–9628
  • Parkinson JS. Bacterial chemotaxis: A new player in response regulator dephosphorylation. J Bacteriol 2003; 185: 1492–1494
  • Sass AM, Eschemann A, Kühl M, Thar R, Sass H, Cypionka H. Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen-sulfide gradients. FEMS Microbiol Ecol 2002; 40: 47–54

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.