175
Views
26
CrossRef citations to date
0
Altmetric
Original

Heterotopic expression of B-class floral homeotic genes PISTILLATA/GLOBOSA supports a modified model for crocus (Crocus sativus L.) flower formation

Full Length Research paper

, , &
Pages 120-130 | Received 05 Jun 2006, Published online: 11 Jul 2009

References

  • Angenent GC, Franken J, Busscher M, Weiss D, van Tunen AJ. Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J 1994; 5: 33–44
  • Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA target recognition. PLoS Biol 2005; 3: e85
  • Becker A, Winter KU, Meyer B, Saedler H, Theissen G. MADS-box gene diversity in seed plants 300 million years ago. Mol Biol Evol 2000; 17: 1425–1434
  • Chung YY, Kim SR, Kang HG, Noh YS, Park MC, Finkel D, An G. Characterization of two rice MADS box genes homologous to GLOBOSA. Plant Sci 1995; 109: 45–56
  • Coen ES, Meyerowitz E. The war of the whorls: Genetic interactions controlling flower development. Nature 1991; 353: 31–37
  • Egea-Cortines M, Saedler H, Sommer H. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS, and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J 1999; 18: 370–5379
  • Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosophila. Genome Biol 2003; 5: Rl
  • Fernandez JA. Biology, biotechnology and biomedicine of saffron. Recent Res Devel Plant Sci 2004; 2: 127–159
  • Ferrario S, Immink RG, Angenent GC. Conservation and diversity in flower land. Curr Opin Plant Biol 2004; 7: 84–91
  • Griffiths-Jones S. The microRNA registry. Nucleic Acids Res 2004; 32: 109–111
  • Grilli Caiola M, Caputo P, Zanier R. RAPD analysis in Crocus sativus L. accessions and related Crocus species. Biol Plant 2004; 48(3)375–380
  • Hama E, Takumi S, Ogihara Y, Murai K. Pistillody is caused by alterations to the class-B MADS-box gene expression pattern in alloplasmic wheats. Planta 2004; 218: 712–720
  • Honma T, Goto KJ. Complexes of MADS-box proteins are sufficient to convert leaves into floral organ. Nature 2001; 409: 525–529
  • Jaervinen PLH, Lemmetyinen J, Savolainen O, Sopanen T. DNA sequence variation in BpMADS2 gene in two populations of Betula pendula. Mol Ecol 2003; 12: 369–384
  • Kanno A, Saedler H, Theissen G. Evolution of class B floral homeotic proteins: Obligate heterodimerization originated from homodimerization. Mol Biol Evol 2002; 19: 587–596
  • Kanno A, Saeki H, Kameya T, Saedler H, Theissen G. Heterotopic expression of class B floral homeotic genes supports a modified ABC model for Tulipa gesneriana (Tulipa gesneriana). Plant Mol Biol 2003; 52: 831–841
  • Kramer EM, Dorit RL, Irish VF. Molecular evolution of genes controlling petal and stamen development: Duplication and divergence within the APETALA3 and PISTILLATA MADS box gene lineages. Genetics 1998; 149: 765–783
  • Kramer EM, Irish VF. Evolution of genetic mechanisms controlling petal development. Nature 1999; 399: 144–148
  • Kramer EM, Irish VF. Evolution of the petal and stamen developmental programs: Evidence from comparative studies of the lower eudicots and basal angiosperms. Intl J Plant Sci 2000; 161: S29–S40
  • Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 2004; 5: 150–163
  • Kush A, Brunelle A, Shevell D, Chua NH. The cDNA sequence of two MADS box proteins in Petunia. Plant Physiol 1993; 102: 1051–1052
  • Li Y, Li W, Jin YX. Computational Identification of Novel family Members of Micro RNA Genes in Arabidopsis thaliana and Oryza sativa. Acta Bioch Bioph Sin 2005; 37(2)75–87
  • Ma H, Yanofsky MF, Meyerowitz EM. AGL1–AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Gene Dev 1991; 5: 484–495
  • Münster T, Wingen LU, Faigl W, Werth S, Saedler H, Theissen G. Characterization of three GLOBOSA-like MADS-box genes from maize: Evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses. Gene 2001; 262: 1–13
  • Nakamura T, Fukuda T, Nakano M, Hasebe M, Kameya T, Kanno A. The modified ABC model explains the development of the petaloid perianth of Agapanthus praecox ssp. orientalis (Agapanthaceae) flowers. Plant Mol Biol 2005; 58: 435–445
  • Park JH, Ishikawa Y, Ochiai T, Kanno A, Kameya T. Two GLOBOSA-like genes are expressed in second and third whorls of homochlamydeous flowers in Asparagus officinalis L. Plant Cell Physiol 2004; 45: 325–332
  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 2000; 405: 200–203
  • Riechmann JL, Krizek BA, Meyerowitz EM. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci 1996; 93: 4793–4798
  • Riechmann JL, Meyerowitz EM. MADS domain proteins in plant development. Biol Chem 1997; 378: 1079–1101
  • Saitou N, Nei M. Neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406–425
  • Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 1990; 250: 931–936
  • Theissen G, Kim JT, Saedler H. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 1996; 43: 484–516
  • Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Minister T, Winter KU, Saedler H. A short history of MADS-box genes in plants. Plant Mol Biol 2000; 42: 115–149
  • Theissen G, Saedler H. Floral quarters. Nature 2001; 409: 469–471
  • Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673–4680
  • Tsai WC, Kuoh CS, Chuang MH, Chen WH, Chen HH. Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol 2004; 45: 831–844
  • Tsai WC, Lee PF, Chen HI, Wei WJ, Hsiao YY, Pan ZJ, Chuang MH, Kuoh CS, Chen WH, Chen HH. PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol 2005; 46(7)1125–1139
  • Tsaftaris AS, Polidoros AN, Pasentsis K, Kalivas A. Tepal formation and expression pattern of B-class paleoAP3-like MADS-box genes in Crocus sativus L. Plant Sci 2006; 170: 238–246
  • Tsaftaris AS, Pasentsis K, Iliopoulos I, Polidoros AN. Isolation of three homologous API-like MADS-box genes in crocus (Crocus sativus L.) and characterization of their expression. Plant Sci 2004; 166: 1235–1243
  • Tsaftaris AS, Pasentsis K, Polidoros AN. Isolation of a differentially spliced C-type flower specific AG-like MADS-box gene from Crocus (Crocus sativus) and characterization of its expression. Biol Plant 2005; 49: 499–504
  • van Tunen AJ, Eikelboom W, Angenent GC. Floral organogenesis in Tulipa gesneriana. Flowering News Lett 1993; 16: 33–38
  • Winter KU, Weiser C, Kaufmann K, Bohne A, Kirchner C, Kanno A, Saedler H, Theissen G. Evolution of class B floral homeotic proteins: Obligate heterodimerization originated from homodimerization. Mol Biol Evol 2002; 19: 587–596
  • Yang Y, Fanning L, Jack T. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant J 2003; 33: 47–59
  • Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 1990; 346: 35–39
  • Yao JL, Dong YH, Morris BA. Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Nat Acad Sci 2001; 98: 1306–1311
  • Zahn LM, Leebens-Mack CW, Depamphilis Hma TG. To B or not to B a flower: The role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. J Hered 2005; 96(3)225–240

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.