139
Views
3
CrossRef citations to date
0
Altmetric
Articles

A domino knoevenagel-phospha-michael reaction: One-pot synthesis of novel organophosphonates in the presence of multi-walled carbon nanotube‒CO‒NH(CH2)2NH-SO3H as catalyst

&
Pages 475-480 | Received 26 Nov 2017, Accepted 11 Mar 2018, Published online: 18 Apr 2018

References

  • Shonle, H. A.; Moment, A. A. Some New Hypnotics of the Barbituric Acid Series. J. Am. Chem. Soc., 1923, 45, 243–249.
  • Sandberg, F. Anaesthetic Properties of Some New N-substituted and N,N′.-disubstituted Derivatives of 5,5-Diallylbarbituric Acid. Acta Physiol. Scand., 1951, 24, 7–26.
  • Andrews, P. R.; Jones, G. P.; Lodge, D. Convulsant, Anticonvulsant and Anaesthetic Barbiturates. 5-Ethyl-5-(3′-methyl-but-2-enyl)-Barbituric Acid and Related Compounds. Eur. J. Pharmacol., 1979, 55, 115–120.
  • Dhorajiya, B. D.; Dholakiya, B. Z.; Mohareb, R. M. Hybrid Probes of Aromatic Amine and Barbituric Acid: Highly Promising Leads for Anti-Bacterial, Anti-Fungal and Anti-Cancer Activities. Med. Chem. Res., 2014, 23, 3941–3952.
  • Singh, P.; Kaur, M.; Verma, P. Design, Synthesis and Anticancer Activities of Hybridsofindole and Barbituric Acids–Identification of Highly Promising Leads. Bioorganic Med. Chem. Lett., 2009, 19, 3054–3058.
  • Irgashev, R. A.; Kim, G. A.; Rusinov, G. L.; Charushin, V. N. 5-(Methylidene)barbituric Acid as a New Anchor Unit for Dye-Sensitized Solar Cells (DSSC). ARKIVOC, 2014, V, 123–131.
  • a) Griffiths, A. J. F.; Miller, J. H.; Suzuki, D. T.; Lewontin, R. C.; Gelbart, W. M. An Introduction to Genetic Analysis. New York: W. H. Freeman, 2000. b) Toy, A. D. F. Phosphorus Chemistry in Everyday Living. Am Chem Soc, New York, 1976. c) Skorupinska-Tudek, K.; Wojcik, J.; Swiezewska, E. Polyisoprenoid Alcohols — Recent Results of Structural Studies. Chem Rec, 2008, 8, 33–45.
  • a) Allen, M. C.; Fuhrer, W.; Tuck, B.; Wade, R.; Wood, J. M. Renin Inhibitors. Synthesis of Transition-State Analogue Inhibitors Containing Phosphorus Acid Derivatives at the Scissile Bond. J. Med. Chem. 1989, 32, 1652–1661. b) Patel, D. V.; Rielly-Gauvin, K.; Ryono, D. E. Preparation of Peptidic α-Hydroxyphosphonates. A New Class of Transition State Analog Renin Inhibitors. Tetrahedron Lett., 1990, 31, 5587–5590. (c) Stowasser, B.; Budt, K. H.; Li, J. Q.; Peyman, A.; Ruppert, D., New Hybrid Transition State Analog Inhibitors of HIV Protease with Peripheric C2-Symmetry. Tetrahedron Lett., 1992, 33, 6625–6628.
  • Kafarski, P.; Lejczak, B. Biological Activity of Aminophosphonic Acids. Phosphorus, Sulfur Silicon Relat. Elem., 1991, 63, 193–215.
  • a) Baylis, E. K.; Campbell, C. D.; Dingwall, J. G. 1-Aminoalkylphosphonous Acids. Part 1. Isosteres of the Protein Amino Acids. J. Chem. Soc, Perkin Trans. 1984, 1, 2845–2853. b) Atherton, F. R.; Hassall, C. H.; Lambert, R. W. Synthesis and Structure-Activity Relationships of Antibacterial Phosphonopeptides Incorporating (1-Aminoethyl) Phosphonic Acid and (Aminomethyl) Phosphonic Acid. J. Med. Chem. 1986, 29, 29–40.
  • Ough, M.; Lewis, A.; Bey, E. A.; Gao, J.; Ritchie, J. M.; Bornmann, W.; Boothman, D. A.; Oberley, L. W.; Cullen, J. J. KLF4 and KLF5 Regulate Proliferation, Apoptosis and Invasion in Esophageal Cancer Cells. Cancer Biol. Ther., 2005, 4, 102–109.
  • Moon, D. O.; Choi, Y. H.; Kim, N. D.; Park, Y. M.; Kim, G. Y. Anti-Inflammatory Effects of β-Lapachone in Lipopolysaccharide-Stimulated BV2 Microglia. Int. Immunopharmacol., 2007, 7, 506–514.
  • Elisa, P. S.; Ana, E. B.; Ravelo, A. G.; Yapu, D. J.; Turba, A. G. Antiplasmodial Activity of Naphthoquinones Related to Lapachol and Beta-Lapachone. Chem. Biodivers., 2005, 2, 264–274.
  • Khafagy, M. M.; El-Wahas, A. H. F. A.; Eid, F. A.; El-Agrody, A. M. Synthesis of Halogen Derivatives of Benzo[h]chromene and Benzo[a]anthracene with Promising Antimicrobial Activities. Farmaco, 2002, 57, 715–722.
  • a) Li, Z.-G.; Sun, H.-K.; Wang, Q.-M.; Huang, R.-Q. An α–hydrazinoalkylphosphonate as Building Block for Novel N-Phosphonoalkylheterocycles. Heteroatom Chem, 2003, 14, 384–386. b) De Noronha, R. G.; Costa, P. J.; Romao, C. C.; Calhorda, M. J.; Fernandes, A. C. MoO2Cl2 as a Novel Catalyst for C‒P Bond Formation and for Hydrophosphonylation of Aldehydes. Organometallics, 2009, 21, 6206–6212. c) Tsai, H.-J.; Lin, K.-W.; Ting, T.-h.; Burton, D. J. A General and Efficient Route for the Preparation of Phenyl-Substituted Vinyl Fluorides. Helvetica Chimica Acta, 1999, 82, 2231–2239. d) Kharasch, M. S.; Mosher, R. A.; Bengelsdorf, I. S. Organophosphorus Chemistry Addition Reactions of Diethyl Phosphonate and the Oxidation of Triethyl Phosphite. Org Chem, 1960, 25, 1000–1006.
  • a) Sobhani, S.; Jahanshahi, R. One-pot Synthesis of β-phosphonomalonatea Catalyzed by Molecular Iodine. Synth. Commun., 2013, 43, 3247–3257. b) Song, L. L.; Yang, Ch.; Yu, Y.-Q.; Xu, D.-Zh. A simple and green tandem Knoevenagel—Phospha-Michael reaction for one-pot synthesis of 2-oxindol-3-ylphosphonates catalyzed by a DABCO-based ionic liquid. Synthesis, 2017, 49, 1641–1647. c) Kour, P.; Kumar, A.; Sharma, R.; Chib, R.; Khan, I. A.; Rai, V. K. Synthesis of 2-Amino-4H-Chromen-4-Ylphosphonates and β-Phosphonomalonates Via Tandem Knoevenagel—Phospha-Michael Reaction and 10 Antimicrobial Evaluation of Newly Synthesized β-Phosphonomalonates. Res. Chem. Intermed., 2017, 43, 7319–7329. d) Kour, P.; Kumar, A.; Rai, V. K. Aqueous Microwave-Assisted DMAP Catalyzed Synthesis of β-Phosphonomalonates and 2-Amino-4H-Chromen-4-Ylphosphonates Via a Domino Knoevenagel–Phospha-Michael Reaction. Comptes Rendus Chimie, 2017, 20, 140–145. e) Hosseini-Sarvari, M.; Etemad, S. Nanosized Zinc Oxide as a Catalyst for the Rapid and Green Synthesis of β-Phosphono Malonates. Tetrahedron, 2008, 64, 5519–5523.
  • a) Pudovik, A. N.; Konovalova, I. V. Addition Reactions of Esters of Phosphorus(III) Acids with Unsaturated Systems. Synthesis, 1979, 81–96. b) Miller, R. C.; Bradley, J. S.; Hamilton, L. A. Disubstituted Phosphine Oxides, III: Addition to a,b-Unsaturated Nitriles and Carbonyl Compounds. J. Am. Chem. Soc. 1956, 78, 5299–5303. c) Bodalski, R.; Pietrusiewicz, K. New Route to the Phospholane Ring System. Tetrahedron Lett. 1972, 13, 4209–4212.
  • a) Shaabani, Y.; Ghassamipour, S. Design and Synthesis of Novel α-Substituted Phosphonic Acids Catalyzed by Nano Zinc Oxide. Phosphorus, Sulfur Silicon Relat. Elem., 2016, 191, 898–903. b) Homayoun, Z.; Ghassamipour, S. Nano-Catalytic Synthesis of Novel Phosphonic Acids Containing of β-Naphthol Group. Iran. Chem. Chem. Chem. Eng., 2017, In Press ( in Persian).
  • Ghassamipour, S.; Rostapour, N. Multi-Walled Carbon Nanotube-CO-NH(CH2)2NH-SO3H: A New Adsorbent for Removal of Methylene Blue from Aqueous Media. Anal. Bioanal. Chem. Research, 2017, 4, 201–211.
  • Abdalla, S.; Al-Marzouki, F.; Al-Ghamdi, A. A.; Abdel-Daiem, A. Different Technical Applications of Carbon Nanotubes. Nanoscale. Res. Lett. 2015, 10, 358–367.
  • Avouris, P.; Chen, Z.; Perebeinos, V. Carbon-Based Electronics. Nat. Nanotechnol., 2007, 2, 605–615.
  • Tsukagoshi, K.; Aliphenaar, B. W.; Ago, H. Coherent Transport of Electron Spin in a Ferromagnetically Contacted Carbon Nanotube. Nature, 1999, 401, 572–574.
  • Misewich, J. A.; Martel, R.; Avouris, P.; Tsang, J. C.; Heinze, S.; Tersoff, J. Electrically Induced Optical Emission from a Carbon Nanotube FET. Science, 2003, 2, 783–786.
  • Bekyarova, E.; Ni, Y.; Malarkey, E. B.; Montana, V.; McWilliams, J. L.; Haddon, R. C.; Parpura, V. Applications of Carbon Nanotubes in Biotechnology and Biomedicine. J. Biomed. Nanotechnol. 2005, 1, 3–17.
  • Yildiz, O.; Bradford, P. D. Aligned Carbon Nanotube Sheet High Efficiency Particulate Air Filters. Carbon, 2013, 64, 295–304.
  • Das, R.; Ali, M. E.; Hamid, S. B. A.; Ramakrishna, S.; Chowdhury, Z. Z. Carbon Nanotube Membranes for Water Purification: A Bright Future in Water Desalination. Desalination, 2014, 336, 97–109.
  • Wilson, N. R.; Macpherson, J. V. Single-walled Carbon Nanotubes as Templates for Nanowire Conducting Probes. Nano Lett., 2003, 3, 1365–1369.
  • Zaporotskova, I. V.; Boroznina, N. P.; Parkhomenko, Y. N.; Kozhitov, L. V. Carbon Nanotubes: Sensor Properties. Mod. Electron. Mater., 2016, 2, 95–105.
  • a) Moussavi, S. P.; Emamjomeh, M. M. Efficiency of Multi-Walled Carbon Nanotubes for Removal of 2-Naphthol Orange Dye from Aqueous Solutions. J. Qazvin Univ. Med. Sci. 2014, 18, 37–44. b) Machado, F. M.; Bergmann, C. P.; Fernandes, T. H. M.; Lima, E. C.; Royer, B.; Calvete, T.; Fagan, S. B. Adsorption of Reactive Red M-2BE Dye from Water Solutions by Multi-Walled Carbon Nanotubes and Activated Carbon. J. Hazard. Mater. 2011, 192, 1122–1131.
  • Moradi, L.; Najafi, G. R.; Saeidiroshan, H. New Method for Preparation of MWCNT-SO3H as an Efficient and Reusable Catalyst for the Solvent-Free Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones/Thiones. Iran. J. Catal. 2015, 5, 357–364.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.