174
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Bifunctionalized allenes. Part XXII. Coinage metal-catalyzed cycloisomerization of phosphorylated 3-(α- or β-hydroxyalkyl)allenes to 2-phosphoryl-2,5-dihydrofurans or 2-phosphoryl-5,6-dihydro-2H-pyrans

, & ORCID Icon
Pages 797-805 | Received 08 May 2018, Accepted 17 Aug 2018, Published online: 16 Oct 2018

References

  • (a) Schuster, H. F.; Coppola, G. M. Allenes in Organic Synthesis. Wiley: New York, 1984. (b) Krause, N., Hashmi, A. S. K., eds. Modern Allene Chemistry. Wiley-VCH: Weinheim, 2004. (c) Brasholz, M.; Reissig, H.-U.; Zimmer, R. Sugars Alkaloids, and Heteroaromatics: Exploring Heterocyclic Chemistry with Alkoxyallenes. Acc. Chem. Res. 2009, 42, 45–56. DOI: 10.1021/ar800011h. (d) Ma, S. Electrophilic Addition and Cyclization Reactions of Allenes. Acc. Chem. Res. 2009, 42, 1679–1688. DOI: 10.1021/ar900153r. (e) Yu, S.; Ma, S. Allenes in Catalytic Asymmetric Synthesis and Natural Product Syntheses. Angew. Chem. Int. Ed. 2012, 51, 3074–3112. DOI: 10.1002/anie.201101460.
  • (a) Bates, R. W.; Satcharoen, V. Nucleophilic Transition Metal Based Cyclization of Allenes. Chem. Soc. Rev. 2002, 31, 12–21. DOI: 10.1039/B103904K. (b) Ma, S. Recent Advances in the Chemistry of Allenes Aldrichim. Acta. 2007, 40, 91–102. (c) Hassan, H. H. A. M. Recent Progress in the Chemistry of Allenes. Curr. Org. Synth. 2007, 4, 413–439. DOI: 10.2174/157017907782408798. (d) Pinho e Melo, T. M. V. D. Allenes as Dipolarophiles and 1,3-Dipole Precursors: Synthesis of Carbocyclic and Heterocyclic Compounds. Curr. Org. Chem. 2009, 13, 1406–1431. DOI: 10.2174/138527209789055090. (e) Back, T. G.; Clary, K. N.; Gao, D. Cycloadditions and Cyclizations of Acetylenic, Allenic, and Conjugated Dienyl Sulfones. Chem. Rev. 2010, 110, 4498–4553. DOI: 10.1021/cr1000546.
  • Chu, W.-D.; Zhang, Y.; Wang, J. Recent Advances in Catalytic Asymmetric Synthesis of Allenes. J. Catal. Sci. Technol. 2017, 7, 4570–4578. DOI: 10.1039/C7CY01319A.
  • (a) Angelov, C. M. Five-membered Heterocyclization of Phosphorus-containing Allenes by their Reaction with Electrophiles-Possibilities and Restrictions. Phosphorus, Sulfur. 1983, 15, 177–193. DOI: 10.1080/03086648308073293. (b) Khusainova, N. G.; Pudovik, A. N. Phosphorylated Allenes. Methods of Synthesis and Properties. Russ. Chem. Rev. 1987, 56, 564–578. DOI: 10.1070/RC1987v056n06ABEH003290. (c) Alabugin, I. V.; Brel, V. K. Phosphorylated Allenes: Structure and Interaction with Electrophiles. Russ. Chem. Rev. 1997, 66, 205–224. DOI: 10.1070/RC1997v066n03ABEH000262. (d) Ma, S. Electrophilic Addition and Cyclization Reactions of Allenes. Acc. Chem. Res. 2009, 42, 1679–1688. DOI: 10.1021/ar900153r. (e) Gangadhararao, G.; Kotikalapudi, R.; Nagarjuna Reddy, M.; Kumara Swamy, K. C. Allenylphosphine Oxides as Simple Scaffolds for Phosphinoylindoles and Phosphinoylisocoumarins. Beilstein J. Org. Chem. 2014, 10, 996–1005. DOI: 10.3762/bjoc.10.99. (f) Kumara Swamy, K. C.; M. Phani Pavan, M.; Anitha; Gangadhararao, G. New Addition and Cyclization Reactions Involving Phosphorus Based Allenes. Phosphorus, Sulfur, Silicon. 2018, 193, 81–87. DOI: 10.1080/10426507.2017.1417302.
  • (a) Mark, V. A facile SNi′ Rearrangement: The Formation of 1,2-Alkadienylphosphonates from 2-Alkynyl Phosphites. Tetrahedron Lett. 1962, 3, 281–285. DOI: 10.1016/S0040-4039(00)70867-7. (b) Boisselle, A. P.; Meinhardt, N. A. Acetylene-Allene Rearrangements. Reactions of Trivalent Phosphorus Chlorides with α-Acetylenic Alcohols and Glycols. J. Org. Chem. 1962, 27, 1828–1833. DOI: 10.1021/jo01052a084. (c) Pudovik, A. N.; Aladzheva, I. M. Acetylene-allene-diene Rearrangements of Diphosphites with β,γ-Acetylenic Bond in the Entire Ester Radical. J. Gen. Chem. USSR. (Engl. Transl.) 1963, 33, 700–706.
  • Shen, R.; Luo, B.; Yang, J.; Zhang, L.; Han. L.-B. Convenient Synthesis of Allenylphosphoryl Compounds via Cu-catalysed Couplings of P(O)H Compounds with Propargyl Acetates. Chem. Commun. 2016, 52, 6451–6454. DOI: 10.1039/C6CC02563C.
  • (a) Kalek, M.; Johansson, T.; Jezowska, M.; Stawinski, J. Palladium-Catalyzed Propargylic Substitution with Phosphorus Nucleophiles: Efficient, Stereoselective Synthesis of Allenylphosphonates and Related Compounds. Org. Lett. 2010, 12, 4702–4702. DOI: 10.1021/ol102121j. (b) Kalek, M.; Stawinski, J. Novel, Stereoselective and Stereospecific Synthesis of Allenylphosphonates and Related Compounds via Palladium‐Catalyzed Propargylic Substitution. Adv. Synth. Catal. 2011, 353, 1741–1755. DOI: 10.1002/adsc.201100119.
  • Shen, R.; Yang, J.; Zhang, M.; Han, L.-B. Silver‐Catalyzed Atom‐Economic Hydrophosphorylation of Propargyl Epoxides: An Access to 4‐Phosphoryl 2,3‐Allenols and Stereodefined 1‐Phosphoryl 1,3‐Dienes. Adv. Synth. Catal. 2017, 359, 3626–3629. DOI: 10.1002/adsc.201700421.
  • Shen, R.; Yang, J.; Zhao, H.; Feng, Y.; Zhang, L.; Han, L.-B. Cu-Catalyzed Hydrophosphorylative Ring Opening of Propargyl Epoxides: Highly Selective Access to 4-Phosphoryl 2,3-Allenols. Chem. Commun. 2016, 52, 11959–11962. DOI: 10.1039/C6CC05428E.
  • Hu, G.; Shan, C.; Chen, W.; Xu, P.; Gao, Y.; Zhao, Y. Copper-Catalyzed Direct Coupling of Unprotected Propargylic Alcohols with P(O)H Compounds: Access to Allenylphosphoryl Compounds under Ligand- and Base-Free Conditions. Org. Lett. 2016, 18, 6066–6069. DOI: 10.1021/acs.orglett.6b03028.
  • (a) Wua, C.; Yeb, F.; Wub, G.; Xub, S.; Deng, G.; Zhang, Y.; Wang, J. Synthesis of Allenylphosphonates through Cu(I)-Catalyzed Coupling­ of Terminal Alkynes with Diazophosphonates. Synthesis. 2016, 48, 751–760. DOI: 10.1055/s-0035-1561298. (b) Gangadhararao, G.; Prasad Tulichala, R. N.; Kumara Swamy, K. C. Spontaneous Resolution upon Crystallization of Allenyl-bis-phosphine Oxides. Chem. Commun. 2015, 51, 7168–7171. DOI: 10.1039/C5CC00232J. (c) Sajna, K. V.; Kotikalapudi, R.; Chakravarty, M.; Bhuvan Kumar, N. N.; Kumara Swamy, K. C. Cycloaddition Reactions of Allenylphosphonates and Related Allenes with Dialkyl Acetylenedicarboxylates, 1,3-Diphenylisobenzofuran, and Anthracene. J. Org. Chem. 2011, 76, 920–938. DOI: 10.1021/jo102240u. (d) Srinivas, V.; Sajna, K. V.; Kumara Swamy, K. C. To Stay as Allene or Go Further? Synthesis of Novel Phosphono-heterocycles and Polycyclics via Propargyl Alcohols. Chem. Commun. 2011, 47, 5629–5631. DOI: 10.1039/C1CC10230C. (e) Gangadhararao, G.; Kumara Swamy, K. C. Tetrahedron. 2014, 70, 2643–2653. (f) Kumara Swamy, K. C.; Mandala Anitha, M.; Gangadhararao, G.; Rama Suresh, R. Exploring Allene Chemistry Using Phosphorus-based Allenes as Scaffolds. Pure Appl. Chem. 2017, 89, 367–368. DOI: 10.1515/pac-2016-0907. (g) Bogachenkov, A. S.; Dogadina, A. V.; Boyarskaya, I. A.; Boyarskiy, V. P.; Vasilyev, A. V. Synthesis of 1,4-Dihydrophosphinoline 1-Oxides by Acid-promoted Cyclization of 1-(Diphenylphosphoryl)allenes. Org. Biomol. Chem. 2016, 1370–1381. DOI: 10.1039/C5OB02143J. (h) Lozovskiy, S. V.; Ivanov, A. Y.; Bogachenkov, A. S.; Vasilyev, A. V. 2,5‐Dihydro‐1,2‐oxaphosphol‐2‐ium Ions, as Highly Reactive Phosphorus‐Centered Electrophiles: Generation, NMR Study, and Reactions. Chem. Select. 2017, 2, 4505–4510. DOI: 10.1002/slct.201700637. (i) Mao, M.; Zhang, L.; Chen, Y.-Z.; Zhu, J.; Wu, L. Palladium-Catalyzed Coupling of Allenylphosphine Oxides with N-Tosylhydrazones toward Phosphinyl [3]-Dendralenes. ACS Catal. 2017, 7, 181–186. DOI: 10.1021/acscatal.6b02972.
  • Zimmer, R.; Dinesh, C. U.; Nadanan, E.; Hhan, F. A. Palladium-Catalyzed Reactions of Allenes. Chem. Rev. 2000, 100, 3067–3125. DOI: 10.1021/cr9902796.
  • (a) Olsson, L.-I.; Claesson, A. Synthesis of 2,5-Dihydrofurans and 5,6-Dihydro-2H-pyrans by Silver(I)-Catalyzed Cyclization of Allenic Alcohols. Synthesis. 1979, 743–745. DOI: 10.1055/s-1979-28825. (b) Nikam, S. S.; Chu, K. H.; Wang, K. K. The Cyclization of Trimethylsilyl-substituted α-Allenic Alcohols to 3-(trimethylsilyl)-2,5-dihydrofurans and their Facile Autoxidation to 3-(Trimethylsilyl)furans or 4-(Trimethylsilyl)-2(5H)-furanones. J. Org. Chem. 1986, 51, 745–747. DOI: 10.1021/jo00355a034. (c) Marshall, J. A.; Sehon C. A. Synthesis of Furans and 2,5-Dihydrofurans by Ag(I)-Catalyzed Isomerization of Allenones, Alkynyl Allylic Alcohols, and Allenylcarbinols. J. Org. Chem. 1995, 60, 5966–5968. DOI: 10.1021/jo00123a040. (d) Marshall, J. A.; Yu, R. H.; Perkins, J. F. Diastereo- and Enantioselective Synthesis of Allenylcarbinols through SE2' Addition of Transient Nonracemic Propargylic Stannanes to Aldehydes. J. Org. Chem. 1995, 60, 5550–5555. DOI: 10.1021/jo00122a040.
  • (a) Chilot, J. -J.; Doutheau, A.; Gore, J. Heterocyclisation de diols βγ′-alleniques. Tetrahedron Lett. 1982, 23, 4693–4696. DOI: 10.1016/S0040-4039(00)85689-0. (b) Gelin, R.; Gelin, S.; Albrand, M. Oxymercuration-demercuration d’alcools α-alleniques. Bull. Soc. Chim. Fr. 1972, 1946–1949.
  • (a) Uemura, K.; Shiraishi, D.; Noziri, M.; Inoue, Y. Preparation of Cyclic Carbonates from Alkadienols, CO2, and Aryl or Vinylic Halides Catalyzed by a Palladium Complex. Bull. Chem. Soc. Jpn. 1999, 72, 1063–1069. DOI: 10.1246/bcsj.72.1063. (b) Kang, S.-K.; Baik, T.-G.; Kulak, A. N. Palladium(0)-Catalyzed Coupling Cyclization of Functionalized Allenes with Hypervalent Iodonium Salts. Synlett. 1999, 324–326. DOI: 10.1055/s-1999-2613. (c) Kang, S.-K.; Yamaguchi, T.; Pyun, S.-J.; Lee, Y.-T.; Baik, T.-G. Palladium-catalyzed Arylation of α-Allenic Alcohols with Hypervalent Iodonium salts: Synthesis of Epoxides and Diol Cyclic Carbonates. Tetrahedron Lett. 1998, 39, 2127–2130. DOI: 10.1016/S0040-4039(98)00076-8.
  • (a) Ma, S.; Gao, W. Efficient Synthesis of 4-(2′-Alkenyl)-2,5-dihydrofurans via PdCl2-catalyzed Coupling–cyclization Reaction of 2,3-Allenols with Allylic Halides. Tetrahedron Lett. 2000, 41, 8933–8936. DOI: 10.1016/S0040-4039(00)01585-9. (b) Ma, S.; Gao, W. Efficient Synthesis of 4-(2‘-Alkenyl)-2,5-dihydrofurans and 5,6-Dihydro-2H-pyrans via the Pd-Catalyzed Cyclizative Coupling Reaction of 2,3- or 3,4-Allenols with Allylic Halides. J. Org. Chem. 2002, 67, 6104–6112. DOI: 10.1021/jo0163997.
  • (a) Yoneda, E.; Kaneko, T.; Zhang, S.-W.; Onitsuka, K.; Takahashi, S. Ruthenium-Catalyzed Cyclic Carbonylation of Allenyl Alcohols. Selective Synthesis of γ- and δ-Lactones. Org. Lett. 2000, 2, 441–443. DOI: 10.1021/ol990377d. (b) Trost, B. M.; Pinkerton, A. B. A Ruthenium-Catalyzed Alkylative Cycloetherification. J. Am. Chem. Soc. 1999, 121, 10842–10843. DOI: 10.1021/ja9929537.
  • (a) Hoffmann-Röder, A.; Krause, N. The Golden Gate to Catalysis. Org. Biomol. Chem. 2005, 3, 387–391. DOI: 10.1039/B416516K. (b) Widenhoefer, R. A.; Han, X. Gold‐Catalyzed Hydroamination of C–C Multiple Bonds. Eur. J. Org. Chem. 2006, 4555–4563. DOI: 10.1002/ejoc.200600399. (c) Hashmi, A. S. K.; Hutchings, G. J. Gold Catalysis. Angew. Chem. Int. Ed. 2006, 45, 7896–7936. DOI: 10.1002/anie.200602454. (d) Jimenez-Nunez, E.; Echavarren, A. M. Molecular Diversity through Gold Catalysis with Alkynes. Chem. Commun. 2007, 333–343. DOI: 10.1039/B612008C. (e) Gorin, D. J.; Toste, F. D. Relativistic Effects in Homogeneous Gold Catalysis. Nature. 2007, 446, 395–403. DOI: 10.1038/nature05592. (f) Bongers, N.; Krause, N. Golden Opportunities in Stereoselective Catalysis. Angew. Chem. Int. Ed. 2008, 47, 2178–2181. DOI: 10.1002/anie.200704729.
  • (a) Hoffman-Röder, A.; Krause, N. Gold(III) Chloride Catalyzed Cyclization of α-Hydroxyallenes to 2,5-Dihydrofurans. Org. Lett. 2001, 3, 2537–2538. DOI: 10.1021/ol016205+. (b) Krause, N.; Hoffman-Röder, A.; Canisius, J. From Amino Acids to Dihydrofurans: Functionalized Allenes in Modern Organic Synthesis. Synthesis. 2002, 1759–1774. DOI: 10.1055/s-2002-33707. (c) Deutsch, C.; Gockel, B.; Hoffmann-Röder, A.; Krause, N. Golden Opportunities in Stereoselective Catalysis: Optimization of Chirality Transfer and Catalyst Efficiency in the Gold-Catalyzed Cycloisomerization of α-Hydroxyallenes to 2,5-Dihydrofurans. Synlett. 2007, 1790–1794. DOI: 10.1055/s-2007-982561.
  • Gockel, B.; Krause, N. Golden Times for Allenes: Gold-Catalyzed Cycloisomerization of β-Hydroxyallenes to Dihydropyrans. Org. Lett. 2006, 8, 4485–4488. DOI: 10.1021/ol061669z.
  • (a) Morita, N.; Krause, N. Gold Catalysis in Organic Synthesis: Efficient Cycloisomerization of α-Aminoallenes to 3-Pyrrolines. Org. Lett. 2004, 6, 4121–4123. DOI: 10.1021/ol0481838. (b) Morita, N.; Krause, N. Gold‐Catalyzed Cycloisomerization of α‐Aminoallenes to 3‐Pyrrolines-Optimization and Mechanistic Studies. Eur. J. Org. Chem. 2006, 4634–4641. DOI: 10.1002/ejoc.200600438.
  • Morita, N.; Krause, N. The First Gold-Catalyzed C-S Bond Formation: Cycloisomerization of α-Thioallenes to 2,5-Dihydrothiophenes. Angew. Chem. Int. Ed. 2006, 45, 1897–1899. DOI: 10.1002/anie.200503846.
  • Brel, V. K. Phosphonoallenes for Building Organophosphorus Derivatives. Heteroatom Chem. 2006, 17, 547–556. DOI: 10.1002/hc.20275.
  • Brel, V. K. Synthesis and Intramolecular Cyclization of Diethylphosphono-Substituted Allenic Glycols. Synthesis. 2001, 1539–1545. DOI: 10.1055/s-2001-16078.
  • (a) Brel, V. K. Synthesis and Cyclization of Diethylphosphono-Substituted α-Allenic Alcohols to 4-(Diethylphosphono)-2,5-dihydrofurans. Synthesis. 1999, 463–466. DOI: 10.1055/s-1999-3420. (b) Brel, V. K.; Abramkin, E. V. Cyclization of Allenyl Phosphonates to 3-Chloro-4-(diethylphosphono)-2,5-dihydrofurans Induced by CuCl2. Mendeleev Commun. 2002, 12, 64–66.
  • Brel, V. K.; Belsky, V. K.; Stash, A. I.; Zavodnik, V. E.; Stang, P. J. Synthesis and Molecular Structure of New Unsaturated Analogues of Nucleotides Containing Six‐Membered Rings. Eur. J. Org. Chem. 2005, 512–521. DOI: 10.1002/ejoc.200400523.
  • (a) Kilroy, T. G.; O’Sullivan, T. P.; Guiry, P. J. Synthesis of Dihydrofurans Substituted in the 2‐Position. Eur. J. Org. Chem. 2005, 4929–4949. DOI: 10.1002/ejoc.200500489. (b) Buzas, A.; Istrate, F.; Gagosz, F. Gold(I)-Catalyzed Stereoselective Formation of Functionalized 2,5-Dihydrofurans. Org. Lett. 2006, 8, 1957–1959. DOI: 10.1021/ol0606839. (c) Liu, Y.; Song, F.; Song, Z.; Liu, M.; Yan, B. Gold-Catalyzed Cyclization of (Z)-2-En-4-yn-1-ols: Highly Efficient Synthesis of Fully Substituted Dihydrofurans and Furans. Org. Lett. 2005, 7, 5409–5412. DOI: 10.1021/ol052160r. (d) Ma, S.; Gao, W. Efficient Synthesis of 4-(2′-Alkenyl)-2,5-dihydrofurans via PdCl2-catalyzed Coupling–cyclization Reaction of 2,3-Allenols with Allylic Halides. Tetrahedron Lett. 2000, 41, 8933–8936. DOI: 10.1016/S0040-4039(00)01585-9. (e) Krause, N.; Laux, M.; Hoffman-Röder, A. New Methods for the Stereoselective Synthesis of 2-Hydroxy-3,4-dienoates and Functionalized 2,5-Dihydrofurans. Tetrahedron Lett. 2000, 41, 9613–9616. DOI: 10.1016/S0040-4039(00)01718-4. (f) Hoffman-Röder, A.; Krause, N. Gold(III) Chloride Catalyzed Cyclization of α-Hydroxyallenes to 2,5-Dihydrofurans. Org. Lett. 2001, 3, 2537–2538. DOI: 10.1021/ol016205+. (g) Krause, N.; Hoffman-Röder, A.; Canisius, J. From Amino Acids to Dihydrofurans: Functionalized Allenes in Modern Organic Synthesis. Synthesis. 2002, 1759–1774. DOI: 10.1055/s-2002-33707.
  • (a) Hong, B.-C.; Chen, Z.-C.; Nagarajan, A.; Rudresha, K.; Chavan, V.; Chen, W.-H.; Jiang, Y.-F.; Zhang, S. C.; Lee, G.-H.; Sarshar, S. Efficient Synthesis of Enantiomerically Pure Dihydropyrans. Tetrahedron Lett. 2005, 46, 1281–1285. DOI: 10.1016/j.tetlet.2004.12.128. (b) Sherry, L. D.; Maus, L.; Laforteza, B. N.; Dean Toste, F. Gold(I)-Catalyzed Synthesis of Dihydropyrans. J. Am. Chem. Soc. 2006, 128, 8132–8133. DOI: 10.1021/ja061344d. (c) Feng, J.; Fu, X.; Chen, Z.; Lin, L.; Liu, X; Feng, X. Efficient Enantioselective Synthesis of Dihydropyrans Using a Chiral N,N′-Dioxide as Organocatalyst. Org. Lett. 2013, 15, 2640–2643. DOI: 10.1021/ol400894j. (d) Niu, Z.; He, X.; Shang, H. Y. The Efficient Enantioselective Synthesis of Dihydropyrans via Organocatalytic Michael Addition Reactions. Tetrahedron: Asymmetry. 2014, 25, 796–801. DOI: 10.1016/j.tetasy.2014.04.014. (e) Min, J.; Xu, G.; Sun, J. A Controlled Selective Synthesis of Dihydropyrans through Tandem Reaction of Alkynes with Diazo Compounds. Chem. Commun. 2017, 53, 4350–4353. DOI: 10.1039/C7CC01616F.
  • (a) Heaney, H.; Ahn, J. S. In Comprehensive Heterocyclic Chemistry II; Vol. 2, Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Eds. Pergamon Press: Oxford, 1996, 297–436. (b) Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications, Wiley-VCH: Weinheim, 2003. (c) Lipshutz, B. H. Five-membered Heteroaromatic Rings as Intermediates in Organic Synthesis. Chem. Rev. 1986, 86, 795–819. DOI: 10.1021/cr00075a005.
  • Ganguli, M.; Burka, L. T.; Harris, T. M. Structural Studies of the Mycotoxin Verrucosidin. J. Org. Chem. 1984, 49, 3762–3766. DOI: 10.1021/jo00194a016.
  • Franck, B.; Gehrken, H.-P. Citreoviridins from Aspergillus terreus. Angew. Chem. Int. Ed. Engl. 1980, 19, 461–462. DOI: 10.1002/anie.198004611.
  • Yamaguchi, R.; Miyake, N.; Kato, K.; Ueno, Y. Peroxyl-Radical Reaction of Retinyl Acetate in Solution. Biosci. Biotechnol. Biochem. 1992, 56, 1529–1532. DOI: 10.1271/bbb.56.1529.
  • (a) Boivin, T. L. B. Synthetic Routes to Tetrahydrofuran, Tetrahydropyran, and Spiroketal Units of Polyether Antibiotics and a Survey of Spiroketals of Other Natural Products. Tetrahedron. 1987, 43, 3309–3362. DOI: 10.1016/S0040-4020(01)81626-4. (b) Koert, U.; Stein, M.; Wagner, H. Bidirectional and Convergent Routes to Oligo(Tetrahydrofurans). Chem. Eur. J. 1997, 3, 1170–1180. DOI: 10.1002/chem.19970030723.
  • Perron, F.; Albizati, K. F. Chemistry of Spiroketals. Chem. Rev. 1989, 89, 1617–1661. DOI: 10.1021/cr00097a015.
  • Erdsack, J.; Krause, N. Synthesis of Furanomycin Derivatives by Gold-Catalyzed Cycloisomerization of α-Hydroxyallenes. Synthesis. 2007, 3741–3750. DOI: 10.1055/s-2007-990860.
  • (a) Atta-ur-Rahman Nasreen, A.; Akhtar, F.; Shekhani, M. S.; Clardy, J.; Parvez, M.; Choudhary, M. I. Antifungal Diterpenoid Alkaloids from Delphinium denudatum. J. Nat. Prod. 1997, 60, 472–474. DOI: 10.1021/np960663n. (b) Yang, W.; Shang, D.; Liu, Y.; Du, Y.; Feng, X. Highly Enantioselective Synthesis of 2,6-Disubstituted and 2,2,6-Trisubstituted Dihydropyrones: A One-Step Synthesis of (R)-(+)-Hepialone and Its Analogues. J. Org. Chem. 2005, 70, 8533–8537. DOI: 10.1021/jo051458s. (c) Smith, A. B.; Sperry, J. B.; Han, Q. Syntheses of (−)-Oleocanthal, a Natural NSAID Found in Extra Virgin Olive Oil, the (−)-Deacetoxy-Oleuropein Aglycone, and Related Analogues. J. Org. Chem. 2007, 72, 6891–6900. DOI: 10.1021/jo071146k. (d) Kumar, S.; Malachowski, W. P.; DuHadaway, J. B.; LaLonde, J. M.; Carroll, P. J.; Jaller, D.; Metz, R.; Prendergast, G. C.; Muller, A. J. Indoleamine 2,3-Dioxygenase Is the Anticancer Target for a Novel Series of Potent Naphthoquinone-Based Inhibitors. J. Med. Chem. 2008, 51, 1706–1718. DOI: 10.1021/jm7014155. (e) Yoo, N. H.; Jang, D. S.; Yoo, J. L.; Lee, Y. M.; Kim, Y. S.; Cho, J.-H.; Kim, J. S. Erigeroflavanone, a Flavanone Derivative from the Flowers of Erigeron annuus with Protein Glycation and Aldose Reductase Inhibitory Activity. J. Nat. Prod. 2008, 71, 713–715. DOI: 10.1021/np070489a. (f) Xu, Z.; Li, Y.; Xiang, Q.; Pei, Z.; Liu, X.; Lu, B.; Chen, L.; Wang, G.; Pang, J.; Lin, Y. Design and Synthesis of Novel Xyloketal Derivatives and Their Vasorelaxing Activities in Rat Thoracic Aorta and Angiogenic Activities in Zebrafish Angiogenesis Screen. J. Med. Chem. 2010, 53, 4642–4653. DOI: 10.1021/jm1001502.
  • (a) Nicolaou, K. C.; Synder, S. A. Classics in Total Synthesis, Wiley-VCH: Weinhein, 2003. (b) Yeung, K.-S.; Paterson, I. Advances in the Total Synthesis of Biologically Important Marine Macrolides. Chem. Rev. 2005, 105, 4237–4313. DOI: 10.1021/cr040614c. (c) Kang, E. J.; Lee, E. Total Synthesis of Oxacyclic Macrodiolide Natural Products. Chem. Rev. 2005, 105, 4348–4378. DOI: 10.1021/cr040629a. (d) Inoue, M. Convergent Strategies for Syntheses of trans-Fused Polycyclic Ethers. Chem. Rev. 2005, 105, 4379–4405. DOI: 10.1021/cr0406108. (e) Aho, J. E.; Pihko, P. M.; Rissa, T. K. Nonanomeric Spiroketals in Natural Products: Structures, Sources, and Synthetic Strategies. Chem. Rev. 2005, 105, 4406–4440. DOI: 10.1021/cr050559n. (f) Nakata, T. Total Synthesis of Marine Polycyclic Ethers. Chem. Rev. 2005, 105, 4314–4347. DOI: 10.1021/cr040627q. (g) Smith, A. B.; Fox, R. J.; Razler, T. M. Evolution of the Petasis-Ferrier Union/Rearrangement Tactic: Construction of Architecturally Complex Natural Products Possessing the Ubiquitous cis-2,6-Substituted Tetrahydropyran Structural Element. Acc. Chem. Res. 2008, 41, 675–687. DOI: 10.1021/ar700234r.
  • (a) Ismailov, I. E.; Ivanov, I. K.; Christov, V. C. Bifunctionalized Allenes. Part XIII. A Convenient and Efficient Method for Regioselective Synthesis of Phosphorylated α-Hydroxyallenes with Protected and Unprotected Hydroxy Group. Molecules. 2014, 19, 6309–6329. DOI: 10.3390/molecules19056309. (b) Ismailov, I. E.; Ivanov, I. K.; Christov, V. C. Bifunctionalized Allenes. Part XV. Synthesis of 2,5-dihydro-1,2-oxaphospholes by Electrophilic Cyclization Reaction of Phosphorylated α-Hydroxyallenes. Molecules. 2014, 19, 11056–11076. DOI: 10.3390/molecules190811056. (c) Christov, V. C.; Ismailov, I. E.; Ivanov, I. K. Bifunctionalized Allenes. Part XVI. Synthesis of 3-Phosphoryl-2,5-dihydrofurans by Coinage Metal-Catalyzed Cyclo-isomerization of Phosphorylated α-Hydroxyallenes. Molecules. 2015, 20, 7263–7275. DOI: 10.3390/molecules20047263. (d) Christov, V. C.; Ismailov, I. E.; Ivanov, I. K. Bifunctionalized Allenes. Part XVII. Synthesis of 2,5-Dihydro-1,2-Oxaphospholes and 2-Phosphoryl-2,5-Dihydrofurans by Electrophilic Cyclization and Coinage Metal-Catalyzed Cycloisomerization of Phosphorylated 3-(β-Hydroxy) Allenes. Int. J. Rec. Sci. Res. 2015, 6, 4526–4537. (e) Ismailov, I. E.; Ivanov, I. K.; Christov, V. C. Bifunctionalized Allenes. Part XIV. A Convenient and Efficient Regioselective Synthesis of Phosphorylated β-Hydroxyallenes with Protected and Unprotected Hydroxy Group. Bulg Chem. Commun. 2014, 46, 39–46. (f) Christov, V. C.; Hasanov, H. H.; Ivanov, I. K. Bifunctionalized Allenes. Part XVIII. Synthesis of 2,5-Dihydro-1,2-Oxaphospholes and 2-Phosphoryl-2,5-Dihydrofurans by Electrophilic Cyclization and Coinage Metal-Catalyzed Cycloisomerization of Phosphorylated 3-(α-Hydroxy)Allenes. Glob. J. Pure Appl. Chem. Res. 2015, 3, 20–36. (g) Hasanov, H. H; Ivanov, I. K.; Christov, V. Ch. Bifunctionalized Allenes. Part XIX. Synthesis, Electrophilic Cyclization/Addition and Coinage Metal-Catalyzed Cycloisomerization of Phosphorylated 3-(β-Hydroxy)allenes. Heteroatom Chem. 2017, 28, e21357. DOI: 10.1002/hc.21357. (h) Hasanov, H. H; Ivanov, I. K.; Christov, V. Ch. Bifunctionalized Allenes. Part XX. A Convenient and Efficient Regioselective Synthesis of Phosphorylated 3-(α-Hydroxyalkyl)allenes. Bulg. Chem. Commun., Special Issue B. 2017, 49, 25–32.
  • Hasanov, H. H; Ivanov, I. K.; Christov, V. Ch. Bifunctionalized Allenes. Part XXI. Electrophilic Cyclization ?nd Addition Reactions of 3-(α- or β-Hydroxyalkyl)-allenylphosphonates and Allenyl Phosphine Oxides. Phosphorus, Sulfur, Silicon. 2018, in press, ID GPSS-2018-0011.R1. DOI: 10.1080/10426507.2018.1487432.
  • Baldwin, J. E. Rules for Ring Closure. Chem. Commun. 1976, 734–736. DOI: 10.1039/C39760000734.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.