102
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Nano catalytic synthesis of flavanone phosphonates using domino Knoevenagel-phospha-Michael route

&
Pages 865-870 | Received 17 Mar 2018, Accepted 23 Aug 2018, Published online: 05 Oct 2018

References

  • Brown, A. C. Understanding Food: Principles and Preparation; Cengage Learning, INC: Boston, 2015; p. 259.
  • Moorthy, N. S. H. N.; Singh, R. J.; Singh, H. P.; Gupta, S. D. Synthesis, Biological Evaluation and in Silico Metabolic and Toxicity Prediction of Some Flavanone Derivatives. Chem. Pharm. Bull. 2006, 54, 1384–1390. DOI: 10.1248/cpb.54.1384.
  • Prado, S.; Janin, Y. L.; Saint-Joanis, B.; Brodin, P.; Michel, S.; Koch, M.; Cole, S. T.; Tillequin, F.; Bost, P.-E. Synthesis and Antimycobacterial Evaluation of Benzofurobenzopyran Analogues. Bioorg. Med. Chem. 2006, 15, 2177–2186. DOI: 10.1016/j.bmc.2006.12.009.
  • Goker, H.; Boykin, D. W.; Yildiz, S. Synthesis and Potent Antimicrobial Activity of Some Novel 2-Phenyl or Methyl-4H-1-Benzopyran-4-Ones Carrying Amidinobenzimidazoles. Bioorg. Med. Chem. 2005, 13, 1707–1714. DOI: 10.1016/j.bmc.2004.12.006.
  • Hsiao, Y. C.; Kuo, W. H.; Chen, P. N.; Chang, H. R.; Lin, T. H.; Yang, W. E.; Hsieh, Y. S.; Chu, S. C. Flavanone and 2'-OH Flavanone Inhibit Metastasis of Lung Cancer Cells via down-Regulation of Proteinases Activities and MAPK Pathway. Chem. Biol. Interact. 2007, 167, 193–206. DOI: 10.1016/j.cbi.2007.02.012.
  • Mughal, E. U.; Ayaz, M.; Hussain, Z.; Hasan, A.; Sadiq, A.; Riaz, M.; Malik, A.; Hussain, S.; Choudhary, M. I. Synthesis and Antibacterial Activity of Substituted Flavones, 4-Thioflavones and 4-Iminoflavone. Bioorg. Med. Chem. 2006, 14, 4704–4711. DOI: 10.1016/j.bmc.2006.03.031.
  • Chen, I. L.; Chen, J. Y.; Shieh, P. C.; Chen, J. J.; Lee, C. H.; Juang, S. H.; Wang, T. C. Synthesis and Antiproliferative Evaluation of Amide-Containing Flavone and Isoflavone Derivatives. Bioorg. Med. Chem. 2008, 16, 7639–7645. DOI: 10.1016/j.bmc.2008.07.013.
  • Lin, Y. M.; Zhou, Y.; Flavin, M. T.; Zhou, L. M.; Nie, W.; Chen, F. C. Chalcones and Flavonoids as anti-Tuberculosis Agents. Bioorg. Med. Chem. 2002, 10, 2795–2802. DOI: 10.1016/S0968-0896(02)00094-9.
  • Dandia, A.; Singh, R.; Khaturia, S. Microwave Enhanced Solid Support Synthesis of Fluorine Containing Benzopyrano-Triazolo-Thiadiazepines as Potent anti-Fungal Agents. Bioorg. Med. Chem. 2006, 14, 1303–1308. DOI: 10.1016/j.bmc.2005.09.057.
  • Koufaki, M.; Kiziridi, C.; Papazafiri, P.; Vassilopoulos, A.; Varro, A.; Nagy, Z.; Farkas, A.; Makriyannis, A. Synthesis and Biological Evaluation of Benzopyran Analogues Bearing Class III Antiarrhythmic Pharmacophores. Bioorg. Med. Chem. 2006, 14, 6666–6678. DOI: 10.1016/j.bmc.2006.05.065.
  • Orhan, D. D.; Özçelik, B.; Özgen, S.; Ergun, F. Antibacterial, Antifungal, and Antiviral Activities of Some Flavonoids. Microbiol. Res. 2010, 165, 496–504. DOI: 10.1016/j.micres.2009.09.002.
  • Chanet, A.; Milenkovic, D.; Manach, C.; Mazur, A.; Morand, C. Citrus Flavanones: What is Their Role in Cardiovascular Protection. J. Agric. Food Chem. 2012, 60, 8809–8822. DOI: 10.1021/jf300669s.
  • (a) Allen, M. C.; Fuhrer, W.; Tuck, B.; Wade, R.; Wood, J. M. Renin Inhibitors. Synthesis of Transition-State Analogue Inhibitors Containing Phosphorus Acid Derivatives at the Scissile Bond. J. Med. Chem. 1989, 32, 1652–1661. DOI: 10.1021/jm00127a041. (b) Patel, D. V.; Rielly-Gauvin, K.; Ryono, D. E. Preparation of Peptidic α-Hydroxy Phosphonates a New Class of Transition State Analog Renin Inhibitors. Tetrahedron Lett. 1990, 31, 5587–5590. DOI: 10.1016/S0040-4039(00)97903-6. (c) Stowasser, B.; Budt, K. H.; Li, J. Q.; Peyman, A.; Ruppert, D., New Hybrid Transition State Analog Inhibitors of HIV Protease with Peripheral C2-Symmetry. Tetrahedron Lett. 1992, 33, 6625–6628. DOI: 10.1016/S0040-4039(00)61002-X. (d) Kafarski, P.; Lejczak, B. Biological Activity of Aminophosphonic Acids. Phosphorus, Sulfur Silicon Relat. Elem. 1991, 63, 193–215. DOI: 10.1080/10426509108029443.
  • (a) Baylis, E. K.; Campbell, C. D.; Dingwall, J. G. 1-Aminoalkylphosphonous Acids. Part 1. Isosteres of the Protein Amino Acids. J. Chem. Soc., Perkin Trans. 1. 1984, 2845–2853. DOI: 10.1039/P19840002845. (b) Atherton, F. R.; Hassall, C. H.; Lambert, R. W. Synthesis and Structure-Activity Relationships of Antibacterial Phosphonopeptides Incorporating (1-aminoethyl)phosphonic Acid and (Aminomethyl)phosphonic Acid. J. Med. Chem. 1986, 29, 29–40. DOI: 10.1021/jm00151a005. (c) Guest, D.; Grant, B. The Complex Action of Phosphonates as Antifungal Agents. Biol. Rev. 1991, 66, 159–187. DOI: 10.1111/j.1469-185X.1991.tb01139.x. (d) Mucha, A.; Drąg, M.; Dalton, J. P.; Kafarski, P. Metallo-Aminopeptidase Inhibitors. Biochimie. 2010, 1509–1529. DOI: 10.1016/j.biochi.2010.04.026. (e) Khafagy, M. M.; El-Wahas, A. H. F. A.; Eid, F. A.; El-Agrody, A. M. Synthesis of Halogen Derivatives of Benzo[h]chromene and Benzo[a]anthracene with Promising Antimicrobial Activities. Farmaco. 2002, 57, 715–722. DOI: 10.1016/S0014-827X(02)01263-6.
  • Zefirov, N. S.; Matveeva, E. D. Catalytic Kabachnik-Fields Reaction: New Horizons for Old Reaction. Arkivoc. 2008, 2008, 1–17. DOI: 10.3998/ark.5550190.0009.101.
  • Chen, H. X.; Huang, L. J.; Liu, J.-B.; Weng, J.; Lu, G. Synthesis of Terminal Vinylphosphonates via DBU-Promoted Tandem Phospha-Michael/Elimination Reactions. Phosphorus Sulfur Silicon Relat Elem. 2014, 189, 1858–1866. DOI: 10.1080/10426507.2014.906422.
  • (a) Sobhani, S.; Jahanshahi, R. One-Pot Synthesis of β-Phosphonomalonates Catalyzed by Molecular Iodine. Synth. Commun. 2013, 43, 3247–3257. DOI: 10.1080/00397911.2013.768670. (b) Kour, P.; Kumar, A.; Sharma, R.; Chib, R.; Khan, I. A.; Rai, V. K. Synthesis of 2-Amino-4H-chromen-4-ylphosphonates and β-Phosphonomalonates via Tandem Knoevenagel– Phospha-Michael Reaction and Antimicrobial Evaluation of Newly Synthesized β-Phosphonomalonates. Res. Chem. Intermed. 2017, 43, 7319–7329. DOI: 10.1007/s11164-017-3077-2. (c) Kour, P.; Kumar, A.; Rai, V. K. Aqueous Microwave Assisted DMAP Catalyzed Synthesis of β-Phosphonomalonates and 2-Amino-4H-chromen-4ylphosphonates via a Domino-Knoevenagel– Phospha-Michael Reaction. Comptes Rendus Chimie. 2017, 20, 140–145. DOI: 10.1016/j.crci.2016.05.013.
  • (a) Shaabani, Y.; Ghassamipour, S. Design and Synthesis of Novel α-Substituted Phosphonic Acids Catalyzed by Nano Zinc Oxide. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 898–903. DOI: 10.1080/10426507.2015.1114942. (b) Hosseini-Sarvari, M.; Etemad, S. Nanosized Zinc Oxide as a Catalyst for the Rapid and Green Synthesis of β-Phosphono Malonates. Tetrahedron. 2008, 64, 5519–5523. DOI: 10.1016/j.tet.2008.03.095.
  • Moghaddam, F. M.; Saeidian, H.; Mirjafary, Z.; Sadeghi, A. Rapid and Efficient One-Pot Synthesis of 1,4-Dihydropyridine and Polyhydroquinoline Derivatives through the Hantzsch Four Component Condensation by Zinc Oxide. J. Iran. Chem. Soc. 2009, 6, 317–324. DOI: 10.1007/BF03245840.
  • Reichardt, C. Solvents and Solvent Effects in Organic Chemistry; Wiley-VCH press: Weinheim, Germany, 2004.
  • Albogami, S.; Karama, U.; Mousa, A. A.; Khan, M.; Al-Mazroa, S. A.; Alkhathlan, H. Z. Simple and Efficient One Step Synthesis of Functionalized Flavanones and Chalcones. Orient J. Chem. 2012, 28, 619–626. DOI: 10.13005/ojc/280201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.