289
Views
36
CrossRef citations to date
0
Altmetric
Reviews

Ionic liquid assisted synthesis of S-heterocycles

Pages 165-185 | Received 25 Aug 2018, Accepted 11 Oct 2018, Published online: 13 Feb 2019

References

  • (a) Farghaly, A. M.; Soliman, R.; Khalil, M. A.; Bekhit, A. A.; Din, A.; Bekhit, A. Thioglycolic Acid and Pyrazole Derivatives of 4(3H)-quinazolinone: Synthesis and Antimicrobial Evaluation. Boll. Chem. Farm. 2002, 141, 372–378. (b) Dabiri, M.; Salehi, P.; Baghbanzadeh, M. Ionic Liquid Promoted Eco-friendly and Efficient Synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Monatsh. Chemie-Chemical Monthly, 2007, 138, 1191–1194. DOI: 10.1007/s00706-007-0635-0. (c) Kaur, N. Synthesis of Six and Seven-Membered Heterocycles Under Ultrasound Irradiation. Synth. Commun. 2018, 48, 1235–1258. doi:10.1080/00397911.2018.1434894. (d) Kaur, N. Photochemical Reactions as Key Steps in Five-Membered N-heterocycles Synthesis. Synth. Commun. 2018, 48, 1259–1284. doi:10.1080/00397911.2018.1443218. (e) Kaur, N. Photochemical Mediated Reactions in Five-Membered O-heterocycles Synthesis. Synth. Commun. 2018, 48, 2119–2149. doi:10.1080/00397911.2018.1485165. (f) Martins, M. A. P.; Frizzo, C. P.; Tier, A. Z.; Moreira, D. N.; Zanatta, N.; Bonacorso, H. G. Ionic Liquids in Heterocyclic Synthesis. Chem. Rev. 2014, 114, PR1–PR70. doi:10.1021/cr500106x.
  • (a) Kaur, N. Palladium-Catalyzed Approach to the Synthesis of Five-Membered O-heterocycles. Inorg. Chem. Commun. 2014, 49, 86–119. doi:10.1016/j.inoche.2014.09.024. (b) Kaur, N.; Kishore, D. Nitrogen-Containing Six-Membered Heterocycles: Solid-Phase Synthesis. Synth. Commun. 2014, 44, 1173–1211. doi:10.1080/00397911.2012.760129. (c) Kaur, N.; Kishore, D. Solid-Phase Synthetic Approach Toward the Synthesis of Oxygen Containing Heterocycles. Synth. Commun. 2014, 44, 1019–1042. doi:10.1080/00397911.2012.760131. (d) Kaur, N. Microwave-Assisted Synthesis of Five Membered O-heterocycles. Synth. Commun. 2014, 44, 3483–3508. doi:10.1080/00397911.2013.800213. (e) Kaur, N. Microwave-Assisted Synthesis of Five Membered O,N-heterocycles. Synth. Commun. 2014, 44, 3509–3537. doi:10.1080/00397911.2013.800214. (f) Kaur, N. Microwave-Assisted Synthesis of Five Membered O,N,N-heterocycles. Synth. Commun. 2014, 44, 3229–3247. doi:10.1080/00397911.2013.798666. (g) Párkányi, C.; Schmidt, D. S. Synthesis of 5-chloro-2-methyl-3-(5-methylthiazol-2-yl)-4(3H)-Quinazolinone and Related Compounds with Potential Biological Activity. J. Heterocycl. Chem. 2000, 37, 725–729. doi:10.1002/jhet.5570370409. (h) Kaur, N. Palladium-Catalyzed Approach to the Synthesis of S-heterocycles. Catal. Rev. 2015, 57, 478–564. doi:10.1080/01614940.2015.1082824.
  • (a) Kaur, N. Benign Approaches for the Microwave-Assisted Synthesis of Five-Membered 1,2-N,N-heterocycles. J. Heterocycl. Chem. 2015, 52, 953–973. doi:10.1002/jhet.2129. (b) Kaur, N. Methods for Metal and Non-metal Catalyzed Synthesis of Six-Membered Oxygen Containing Poly-heterocycles. Curr. Org. Synth. 2017, 14, 531–556. doi:10.2174/1570179413666161021104. (c) Kaur, N. Photochemical Reactions: Synthesis of Six-Membered N-heterocycles. Curr. Org. Synth. 2017, 14, 972–998. doi:10.2174/15701179414666170201150701. (d) Kaur, N. Ionic Liquids: Promising but Challenging Solvents for the Synthesis of N-heterocycles. Mini Rev. Org. Chem. 2017, 14, 3–23. doi:10.2174/1570193X13666161019120. (e) Kaur, N. Metal Catalysts for the Formation of Six-Membered N-Polyheterocycles. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 2016, 46, 983–1020. doi:10.1080/15533174.2014.989620. (f) Kaur, N. Applications of Gold Catalysts for the Synthesis of Five-Membered O-heterocycles. Inorg. Nano-Met. Chem. 2017, 47, 163–187. doi:10.1080/15533174.2015.1068809. (g) Connolly, D. J.; Cusack, D.; O’Sullivan, T. P.; Guiry, P. J. Synthesis of Quinazolinones and Quinazolines. Tetrahedron, 2006, 61, 10153–10202. doi:10.1016/j.tet.2005.07.010.
  • (a) Kaur, N. Metal Catalysts: Applications in Higher Membered N-heterocycles Synthesis. J. Iran. Chem. Soc. 2015, 12, 9–45. DOI 10.1007/s13738-014-0451-5. (b) Kaur, N. Insight into Microwave-Assisted Synthesis of Benzo Derivatives of Five Membered N,N-heterocycles. Synth. Commun. 2015, 45, 1269–1300. doi:10.1080/00397911.2013.827725. (c) Kaur, N. Synthesis of Fused Five-Membered N,N-heterocycles Using Microwave Irradiation. Synth. Commun. 2015, 45, 1379–1410. doi:10.1080/00397911.2013.828078. (d) Kaur, N. Microwave-Assisted Synthesis of Seven Membered S-heterocycles. Synth. Commun. 2014, 44, 3201–3228. doi:10.1080/00397911.2013.798665. (e) Kaur, N. Six membered N-heterocycles: Microwave-Assisted Synthesis. Synth. Commun. 2015, 45, 1–34. doi:10.1080/00397911.2013.813548. (f) Kaur, N. Polycyclic Six Membered N-heterocycles: Microwave-Assisted Synthesis. Synth. Commun. 2015, 45, 35–69. doi:10.1080/00397911.2013.813549. (g) Hazarkhani, H.; Karimi, B. A Facile Synthesis of new 3-(2-benzimidazoyl)-2-alkyl-4-(3H)-quinazolinones Under Microwave Irradiation. Tetrahedron 2003, 59, 4757–4760. doi:10.1016/s0040-4020(03)00696-3.
  • (a) Kaur, N. Microwave-Assisted Synthesis: Fused Five Membered N-heterocycles. Synth. Commun. 2015, 45, 789–823. doi:10.1080/00397911.2013.824984. (b) Kaur, N. Six Membered Heterocycles with Three and Four N-heteroatoms: Microwave-Assisted Synthesis. Synth. Commun. 2015, 45, 151–172. doi:10.1080/00397911.2013.813550. (c) Kaur, N. Application of Microwave-Assisted Synthesis in the Synthesis of Fused Six-Membered Heterocycles with N-heteroatom. Synth. Commun. 2015, 45, 173–201. doi:10.1080/00397911.2013.816734. (d) Kaur, N. Microwave-Assisted Synthesis of Fused Polycyclic Six Membered N-heterocycles. Synth. Commun. 2015, 45, 273–299. doi:10.1080/00397911.2013.816735. (e) Kaur, N. Review of Microwave-Assisted Synthesis of Benzo Fused Six-Membered N,N-heterocycles. Synth. Commun. 2015, 45, 300–330. doi:10.1080/00397911.2013.816736. (f) Kaur, N.; Kishore, D. Synthetic Strategies Applicable in the Synthesis of Privileged Scaffold: 1,4-benzodiazepine. Synth. Commun. 2014, 44, 1375–1413. doi:10.1080/00397911.2013.772202. (g) Orru, R. V. A.; Greef, M. Recent Advances in Solution Phase Multicomponent Methodology for the Synthesis of Heterocyclic Compounds. Synthesis 2003, 10, 1471–1499. 10.1055/s-2003-40507. (h) Jawale, D. V.; Pratap, U. R.; Lingampalle, D. L.; Mane, R. A. Dicationic Ionic Liquid Mediated Synthesis of 5‐arylidine‐2,4‐thiazolidinediones. Chinese J. Chem. 2011, 29, 942–946. doi:10.1002/cjoc.201190192. (i) Dandia, A.; Singh, R.; Saini, D. Ionic Liquid-Mediated Three-Component Synthesis of Fluorinated Spiro-Thiazine Derivatives and Their Antimycobacterial and DNA Cleavage Activities. J. Chem. Sci. 2013, 125, 1045–1053. doi:10.1007/s12039-013-0493-8. (j) Kaur, N. Ruthenium Catalysis in Six-Membered O-heterocycles Synthesis. Synth. Commun. 2018, 48, 1551–1587. doi:10.1080/00397911.2018.1457698. (k) Kaur, N. Green Synthesis of Three to Five-Membered O-heterocycles Using Ionic Liquids. Synth. Commun. 2018, 48, 1588–1613. doi:10.1080/00397911.2018.1458243. (l) Kaur, N. Ultrasound-Assisted Green Synthesis of Five-Membered O- and S-heterocycles. Synth. Commun. 2018, 48, 1715–1738. doi:10.1080/00397911.2018.1460671.
  • (a) Zhao, D.; Wu, M.; Kou, Y.; Min, K. Ionic Liquids: Applications in Catalysis. Catal. Today, 2002, 74, 157–189. doi:10.1016/s0920-5861(01)00541-7. (b) Kaur, N. Perspectives of Ionic Liquids Applications for the Synthesis of Five and Six-Membered O,N-heterocycles. Synth. Commun. 2018, 48, 473–495. doi:10.1080/00397911.2017.1406521. (c) Kaur, N. Gold Catalysts in the Synthesis of Five-Membered N-heterocycles. Curr. Organocatal. 2017, 4, 122–154. doi:10.2174/221333720466171103142349. (d) Kaur, N., Photochemical Reactions for the Synthesis of Six-Membered O-heterocycles. Curr. Org. Synth. 2018, 15, 298–320. doi:10.2174/1570179414666171011160355. (e) Arya, K.; Prabhakar, B. Ionic Liquid Confined Zeolite System: An Approach Towards Water Mediated Room Temperature Synthesis of spiro[pyrazolo[3,4-e]benzothiazepines]. Green Chem. 2013, 15, 2885–2894. doi:10.1039/c3gc40553b. (f) Badshah, S. L.; Naeem, A. Bioactive Thiazine and Benzothiazine Derivatives: Green Synthesis Methods and Their Medicinal Importance. Molecules 2016, 21, 1054. doi:10.3390/molecules21081054. (g) Gao, X.; Yu, B.; Yang, Z.; Zhao, Y.; Zhang, H.; Hao, L.; Han, B.; Liu, Z. Ionic Liquid-Catalyzed C-S Bond Construction Using CO2 as a C1 Building Block Under Mild Conditions: A Metal-Free Route to Synthesis of Benzothiazoles. ACS Catal. 2015, 5, 6648–6652. doi:10.1021/acscatal.5b01874.
  • (a) Kaur, N. Environmentally Benign Synthesis of Five Membered 1,3-N,N-heterocycles by Microwave Irradiation. Synth. Commun. 2015, 45, 909–943. doi:10.1080/00397911.2013.825808. (b) Kaur, N. Advances in Microwave-Assisted Synthesis for Five Membered N-heterocycles Synthesis. Synth. Commun. 2015, 45, 432–457. doi:10.1080/00397911.2013.824982. (c) Kaur, N. Microwave-Assisted Synthesis of Five Membered S-Heterocycles. J. Iran. Chem. Soc. 2014, 11, 523–564. DOI 10.1007/s13738-013-0325-2. (d) Kaur, N. Review on the Synthesis of Six Membered N,N-heterocycles by Microwave Irradiation. Synth. Commun. 2015, 45, 1145–1182. doi:10.1080/00397911.2013.827208. (e) Kaur, N. Greener and Expeditious Synthesis of Fused Six-Membered N,N-heterocycles Using Microwave Irradiation. Synth. Commun. 2015, 45, 1493–1519. doi:10.1080/00397911.2013.828236. (f) Kaur, N. Applications of Microwaves in the Synthesis of Polycyclic Six Membered N,N-heterocycles. Synth. Commun. 2015, 45, 1599–1631. doi:10.1080/00397911.2013.828755. (g) Kaur, N. Synthesis of Five-Membered N,N,N- and N,N,N,N-Heterocyclic Compounds: Applications of Microwaves. Synth. Commun. 2015, 45, 1711–1742. doi:10.1080/00397911.2013.828756. (h) Bao, Q.; Qiao, K.; Tomida, D.; Yokoyama, C. Preparation of 5-hydroymethylfurfural by Dehydration of Fructose in the Presence of Acidic Ionic Liquid. Catal. Commun. 2008, 9, 1383–1388. doi:10.1016/j.catcom.2007.12.002.
  • (a) Kaur, N. Role of Microwaves in the Synthesis of Fused Five Membered Heterocycles with Three N-heteroatoms. Synth. Commun. 2015, 45, 403–431. doi:10.1080/00397911.2013.824981. (b) Kaur, N. Recent Impact of Microwave-Assisted Synthesis on Benzo Derivatives of Five Membered N-heterocycles. Synth. Commun. 2015, 45, 539–568. doi:10.1080/00397911.2013.824983. (c) Kaur, N.; Kishore, D. Microwave-Assisted Synthesis of Seven and Higher Membered N-heterocycles. Synth. Commun. 2014, 44, 2577–2614. doi:10.1080/00397911.2013.783922. (d) Kaur, N.; Kishore, D. Microwave-Assisted Synthesis of Six-Membered S-Heterocycles. Synth. Commun. 2014, 44, 2615–2644. doi:10.1080/00397911.2013.792354. (e) Kaur, N.; Kishore, D. Microwave-Assisted Synthesis of Seven and Higher Membered O-heterocycles. Synth. Commun. 2014, 44, 2739–2755. doi:10.1080/00397911.2013.796382. (f) Luo, S.; Mi, X.; Zhang, L.; Liu, S.; Xua, H.; Cheng, J. P. Functionalized Ionic Liquids Catalyzed Direct Aldol Reactions. Tetrahedron 2007, 63, 1923–1930. doi:10.1016/j.tet.2006.12.079. (g) Kaur, N. Solid-Phase Synthesis of Sulfur Containing Heterocycles. J. Sulfur Chem. 2018, 39, 544–577. doi:10.1080/17415993.2018.1457673.
  • (a) Kaur, N. Palladium Catalysts: Synthesis of Five-Membered N-heterocycles Fused with Other Heterocycles. Catal. Rev. 2015, 57, 1–78. doi:10.1080/01614940.2014.976118. (b) Kaur, N.; Kishore, D. Microwave-Assisted Synthesis of Six Membered O,O-heterocycles. Synth. Commun. 2014, 44, 3082–3111. doi:10.1080/00397911.2013.796384. (c) Kaur, N.; Kishore, D. Microwave-Assisted Synthesis of Six Membered O-Heterocycles. Synth. Commun. 2014, 44, 3047–3081. doi:10.1080/00397911.2013.796383. (d) Nair, V.; Vellalath, S.; Poonoyh, M.; Suresh, E.; Viji, S. N-Heterocyclic Carbene Catalyzed Reaction of Enals and diaryl-1,2 diones via Homoenolate: Synthesis of 4,5,5-trisubstituted γ-butyrolactones. Synthesis 2007, 20, 3195–3200. doi:10.1055/s-2007-990781.
  • (a) Patel, R. V.; Chikhalia, K. H.; Nile, S. H.; Park, S. W. Ionic Liquid Mediated Tandem Synthesis of Bioactive Quinoline Based Thiophene/Thiazole Linked Multi-heterocomponent Ugi Adducts. Curr. Org. Chem. 2013, 17, 1125–1129. 10.2174/1385272811317100013. (b) Choudhary, S.; Muthyala, M. K.; Kumar, A. Ionic Liquid Phase Synthesis (IoLiPS) of 2-aminothiazoles and imidazo[1,2-a]pyridines. RSC Adv. 2014, 4, 47368–47372. doi:10.1039/c4ra08009b. (c) Yavari, I.; Sayyed-Alangi, S. Z.; Hajinasiri, R.; Sajjadi-Ghotbabadi, H. A One-Pot Synthesis of Functionalized Ethyl 1,3-thiazole-5-Carboxylates from Thioamides Or Thioureas and 2-Chloro-1,3-Dicarbonyl Compounds in an Ionic Liquid. Monatsh. Chem. 2009, 140, 209–211. doi:10.1007/s00706-008-0065-7.
  • (a) Sheldon, R. Catalytic Reactions in Ionic Liquids. Chem. Commun. 2001, 23, 2399–2407. doi:10.1039/b107270f, (b) Ramprasad, J.; Nayak, N.; Dalimba, U.; Yogeeswari, P.; Sriram, D. Ionic Liquid Promoted One-Pot Synthesis of Thiazole-imidazo[2,1-b] [1,3,4]thiadiazole Hybrids and Their Antitubercular Activity. Med. Chem. Commun. 2016, 7, 338–344. T doi:10.1039/c5md00346f. (c) Nadeem, S.; Munawar, M. A.; Ahmad, S.; Smiglak, M.; Drab, D. M.; Malik, K. I.; Amjad, R.; Ashraf, C. M.; Rogers, R. D. Solvent-Free Synthesis of Benzothiazole-Based Quaternary Ammonium Salts: Precursors to Ionic Liquids. ARKIVOC 2010, (vii), 19–37. doi:10.3998/ark.5550190.0011.703. (d) Waseem, M. A.; Shireen, Srivastava, A.; Srivastava, A.; Siddiqui, R. I. R. Water and Ionic Liquid Synergy: A Novel Approach for the Synthesis of Benzothiazole-2(3H)-one. J. Saudi Chem. Soc. 2015, 19, 334–339. 10.1016/j.jscs.2014.05.006. (e) Wen, L.-R.; Xie, H.-Y.; Li, M. A Basic Ionic Liquid Catalyzed Reaction of Benzothiazole, Aldehydes, and 5,5-dimethyl-1,3-Cyclohexanedione: Efficient Synthesis of Tetrahydrobenzo[b]pyrans. J. Heterocycl. Chem. 2009, 46, 954–959. 10.1002/jhet.183. (f) Sakirolla, R.; Krishnaji, T.; Yaeghoobi, M.; Rahman, N. A. Di-cationic Ionic Liquid Catalyzed Synthesis of 1,5-benzothiazepines. Asian J. Chem. 2018, 30, 107–115. doi:10.14233/ajchem.2018.20920.
  • (a) Wang, Y. Y.; Li, W.; Dai, L. Y. Bronsted Acidic Ionic Liquids as Efficient Reaction Medium for Cyclodehydration of Diethylene Glycol. Chin. J. Chem. 2008, 26, 1390–1394. doi:10.1002/cjoc.200890253. (b) Arya, K.; Rawat, D. S.; Dandia, A.; Sasai, H. Brønsted Acidic Ionic Liquids: Green, Efficient and Reusable Catalyst for Synthesis of Fluorinated Spiro [Indole-Thiazinones/Thiazolidinones] as Antihistamic Agents. J. Fluorine Chem. 2012, 137, 117–122. doi:10.1016/j.jfluchem.2012.03.003. (c) Esmaeili, A. A.; Hosseinabadi, R.; Razi, M. Ionic Liquid Promoted Efficient Three-Component Synthesis of 2-thioxo-2H-thiopyrans. Phosphorus Sulfur and Silicon and the Relat. Elements, 2011, 186, 2267–2273. doi:10.1080/10426507.2011.601776. (d) Jain, R.; Yadav, T.; Kumar, M.; Yadav, A. K. Facile Ionic Liquid-Mediated Protocol for the Regioselective Synthesis of 1,5-benzothiazepines. Synth. Commun. 2011, 41, 1889–1900. doi:10.1080/00397911.2010.493626. (e) Dandia, A.; Gupta, S. L.; Jain, A. K. An Efficient One-Pot Synthesis of Spiro [Indole-Pyrazolobenzothiazepine] Derivatives in Ionic Liquid Using Amberlyst-15 as a Reusable Catalyst. Curr. Green Chem. 2014, 1, 80–85. doi:10.2174/221334610101131218095819.
  • Carvalho, P. J.; Alvarez, V. H.; Marrucho, I. M.; Aznar, M.; Coutinho, J. A. P. High Pressure Phase Behavior of Carbon Dioxide in 1-Butyl-3-Methylimidazolium Bis (trifluoromethylsulfonyl) Imide and 1-Butyl-3-Methylimidazolium Dicyanamide Ionic Liquids. J. Supercritical Fluids 2009, 50, 105–111. doi:10.1016/j.supflu.2009.05.008.
  • Hut’ka, M.; Toma, Š. Hydrogen-Transfer Reduction of Aromatic Ketones in Basic Ionic Liquids. Monatsh. Chem. 2009, 140, 1189–1194. doi:10.1007/s00706-009-0161-3.
  • Cao, Y.; Li, H.; Zhang, Y.; Zhang, J.; He, J. Structure and Properties of Novel Regenerated Cellulose Films Prepared from Cornhusk Cellulose in Room Temperature Ionic Liquids. J. Appl. Polym. Sci. 2010, 116, 547–554. doi:10.1002/app.31273.
  • Sescousse, R.; Gavillon, R.; Budtova, T. Aerocellulose from Cellulose-Ionic Liquid Solutions: preparation, Properties and Comparison with cellulose-NaOH and cellulose-NMMO Routes. Carbohydr. Polym 2011, 83, 1766–1774. doi:10.1016/j.carbpol.2010.10.043.
  • Stark, A. Ionic Liquids in the Biorefinery: A Critical Assessment of Their Potential. Energ. Environ. Sci 2011, 4, 19–32. doi:10.1039/c0ee00246a.
  • Mora-Pale, M.; Meli, L.; Doherty, T. V.; Linhardt, R. J.; Dordick, J. S. Room Temperature Ionic Liquids as Emerging Solvents for the Pretreatment of Lignocellulosic Biomass. Biotechnol. Bioeng. 2011, 108, 1229–1245. doi:10.1002/bit.23108.
  • Sun, N.; Rodriguez, H.; Rahman, M.; Rogers, R. D. Where Are Ionic Liquid Strategies Most Suited in the Pursuit of Chemicals and Energy from Lignocellulosic Biomass? Chem. Commun 2011, 47, 1405–1421. doi:10.1039/c0cc03990j.
  • Yue, C.; Fang, D.; Liu, L.; Yi, T.-F. Synthesis and Application of Task-Specific Ionic Liquids Used as Catalysts and/or Solvents in Organic Unit Reactions. J. Mol. Liq 2011, 163, 99–121. doi:10.1016/j.molliq.2011.09.001.
  • Joo, Y.-H.; Gao, H.; Zhang, Y.; Shreeve, J. M. Inorganic or Organic Azide-Containing Hypergolic Ionic Liquids. Inorg. Chem. 2010, 49, 3282–3288. doi:10.1021/ic902224t.
  • Shamshina, J. L.; Smiglak, M.; Drab, D. M.; Parker, T. G.; Dykes, H. W. H.; Jr., Di Salvo, R.; Reich, A. J.; Rogers, R. D. Catalytic Ignition of Ionic Liquids for Propellant Applications. Chem. Commun. 2010, 46, 8965–8967. doi:10.1039/c0cc02162h.
  • Chaturvedi, D. Recent Developments on Task Specific Ionic Liquids. Coc. 2011, 15, 1236–1248. doi:10.2174/138527211795202997.
  • Giernoth, R. Task-Specific Ionic Liquids. Angew. Chem. Int. Ed 2010, 49, 2834–2839. doi:10.1002/anie.200905981.
  • Gericke, M.; Fardim, P.; Heinze, T. Ionic Liquids- Promising but Challenging Solvents for Homogeneous Derivatization of Cellulose. Molecules 2012, 17, 7458–7502. doi:10.3390/molecules17067458.
  • Nakayama, J.; Horikoshi, R.; Ishii, A.; Hoshino, M.; Kobayashi, H. Reaction of Benzyne with Thiophosgene. Phosphorus Sulfur Silicon Relat. Elem 1983, 16, 195–199. doi:10.1080/03086648308077768.
  • Okuma, K.; Shiki, K.; Sonoda, S.; Koga, Y.; Shioji, K.; Kitamura, T.; Fujiwara, Y.; Yokomori, Y. Reaction of Electronically Stabilized Thiones with Benzyne. The Isolation of Thiobenzophenonebenzyne and Thiopivalophenone-Benzyne Adducts. BCSJ 2000, 73, 155–161. doi:10.1246/bcsj.73.155.
  • Okuma, K.; Shiki, K.; Shioji, K. Reaction of Thiopivalophenones with Benzyne. Formation of 2Hbenzo[b]Thietes. Chem. Lett. 1998, 27, 79–80. doi:10.1246/cl.1998.79.
  • Meier, H. Benzoxetes and Benzothietes: Heterocyclic Analogues of Benzocyclobutene. Molecules 2012, 17, 1548–1570. doi:10.3390/molecules17021548.
  • Tsuchikama, K.; Hashimoto, Y.; Endo, K.; Shibata, T. Iridium‐Catalyzed Selective Synthesis of 4‐Substituted Benzofurans and Indoles via Directed Cyclodehydration. Adv. Synth. Catal. 2009, 351, 2850–2854. doi:10.1002/adsc.200900570.
  • Egi, M.; Azechi, K.; Akai, S. Cationic Gold(I)-Mediated Intramolecular Cyclization of 3-Alkyne-1,2-Diols and 1-Amino-3-Alkyn-2-Ols: A Practical Route to Furans and Pyrroles. Org. Lett. 2009, 11, 5002–5005. doi:10.1021/ol901942t.
  • Yada, Y.; Miyake, Y.; Nishibayashi, Y. Ruthenium-Catalyzed Intramolecular Cyclization of 3-Butyne-1,2-Diols into Furans. Organometallics 2008, 27, 3614–3617. doi:10.1021/om800298r.
  • Hayes, S. J.; Knight, D. W.; Menzies, M. D.; O’Halloran, M.; Tan, W.-F. An Efficient Furan Synthesis Using Heterogeneous Catalysis. Tetrahedron Lett. 2007, 48, 7709–7712. doi:10.1016/j.tetlet.2007.08.102.
  • Knight, D. W.; Sharland, C. M. On the Formation of β-Hydroxy-Dihydropyrroles from Metal-Catalyzed Cyclisations of γ-Ynyl-β-Hydroxy-α-Amino Esters. Synlett. 2004, 1, 119–121. doi:10.1055/s-2003-43369.
  • Sakai, M.; Sasaki, M.; Tanino, K.; Miyashita, M. Synthetic Studies of Zoanthamine Alkaloids. Stereoselective Synthesis of the ABC Ring System of Norzoanthamine by an Intramolecular Diels-Alder Reaction. Tetrahedron Lett 2002, 43, 1705–1708. doi:10.1016/s0040-4039(02)00079-5.
  • McDonald, F. E.; Zhu, H. Y. H. Synthesis of Pyranose Glycals via Tungsten and Molybdenum Pentacarbonyl-Induced Alkynol Cyclizations. Tetrahedron 1997, 53, 11061–11068. doi:10.1016/s0040-4020(97)00366-9.
  • McDonald, F. E.; Gleason, M. M. Asymmetric Synthesis of Nucleosides via Molybdenum-Catalyzed Alkynol Cycloisomerization Coupled with Stereoselective Glycosylations of Deoxyfuranose Glycals and 3-Amidofuranose Glycols. J. Am. Chem. Soc. 1996, 118, 6648–6659. doi:10.1021/ja960581l.
  • McDonald, F. E.; Connolly, C. B.; Gleason, M. M.; Towne, T. B.; Treiber, K. D. A New Synthesis of 2,3-Dihydrofurans: cycloisomerization of Alkynyl Alcohols to Endocyclic Enol Ethers. J. Org. Chem. 1993, 58, 6952–6953. doi:10.1021/jo00077a006.
  • Wakabayashi, Y.; Fukuda, Y.; Shiragami, H.; Utimoto, K.; Nozaki, H. Preparation of Furans from Alkynols Utilizing Palladium Catalyzed Intramolecular Addition of Alcohol to Acetylene as a Key Reaction. Tetrahedron 1985, 41, 3655–3661. doi:10.1016/s0040-4020(01)91384-5.
  • Utimoto, K.; Miwa, H.; Nozaki, H. Palladium-Catalyzed Synthesis of Pyrroles. Tetrahedron Lett. 1981, 22, 4277–4278. doi:10.1016/s0040-4039(01)82932-4.
  • Gabriele, B.; Plastina, P.; Vetere, M. V.; Veltri, L.; Mancuso, R.; Salerno, G. A Simple and Convenient Synthesis of Substituted Furans and Pyrroles by CuCl2-Catalyzed Heterocyclodehydration of 3-yne1,2-Diols and N-Boc- or N-Tosyl-1-Amino-3-yn-2-Ols. Tetrahedron Lett. 2010, 51, 3565–3567. doi:10.1016/j.tetlet.2010.05.001.
  • Aponick, A.; Li, C.-Y.; Malinge, J.; Marques, E. F. An Extremely Facile Synthesis of Furans, Pyrroles, and Thiophenes by the Dehydrative Cyclization of Propargyl Alcohols. Org. Lett. 2009, 11, 4624–4627. doi:10.1021/ol901901m.
  • Liu, Y.; Liu, Y.; Zhan, X. High‐Mobility Conjugated Polymers Based on Fused‐Thiophene Building Blocks. Macromol. Chem. Phys. 2011, 212, 428–443. doi:10.1002/macp.201000677.
  • Ivonin, S. P.; Tolmachev, A. A.; Pinchuk, A. M. Phosphorylation of Thiophenes. COC 2008, 12, 25–38. doi:10.2174/138527208783330073.
  • Sperry, J. B.; Wright, D. L. Furans, Thiophenes and Related Heterocycles in Drug Discovery. Curr. Opin. Drug Discovery Dev. 2005, 8, 723–740.
  • Barbarella, G.; Melucci, M.; Sotgiu, G. The Versatile Thiophene: An Overview of Recent Research on Thiophene‐Based Materials. Adv. Mater. 2005, 17, 1581–1593. doi:10.1002/adma.200402020.
  • Guernion, N. J. L.; Hayes, W. 3- and 3,4-Substituted Pyrroles and Thiophenes and Their Corresponding Polymers - a Review. Coc. 2004, 8, 637–651. doi:10.2174/1385272043370771.
  • Angelici, R. J. Thiophenes in Organotransition Metal Chemistry: patterns of Reactivity. Organometallics 2001, 20, 1259–1275. doi:10.1021/om010040r.
  • Roncali, J. Conjugated Poly(thiophenes): Synthesis, Functionalization, and Applications. Chem. Rev. 1992, 92, 711–738. doi:10.1021/cr00012a009.
  • Mishra, P.; Maurya, H. K.; Tandon, V. K.; Kumar, B.; Ram, V. J. Synthesis of Thiophenes and Pyranone Fused Thiophenes by Base Induced Inter and Intramolecular C-S and C-C Bond Formation: A Non-Catalytic Approach. Tetrahedron Lett. 2012, 53, 1056–1059. doi:10.1016/j.tetlet.2011.12.066.
  • Teiber, M.; Müller, T. J. J. Rapid Consecutive Three-Component coupling-Fiesselmann Synthesis of Luminescent 2,4-Disubstituted Thiophenes and Oligothiophenes. Chem. Commun. 2012, 48, 2080–2082. doi:10.1039/C2CC17548G.
  • Robertson, F. J.; Wu, J. Phosphorothioic Acids and Related Compounds as Surrogates for H2S-Synthesis of Chiral Tetrahydrothiophenes. J. Am. Chem. Soc. 2012, 134, 2775–2780. doi:10.1021/ja210758n.
  • Gabriele, B.; Mancuso, R.; Veltri, L.; Maltese, V.; Salerno, G. Synthesis of Substituted Thiophenes by Palladium-Catalyzed Heterocyclodehydration of 1-Mercapto-3-yn-2-Ols in Conventional and Nonconventional Solvents. J. Org. Chem. 2012, 77, 9905–9909. doi:10.1021/jo301943k.
  • Hu, Y.; Chen, Z.-C.; Le, Z.-G.; Zheng, Q.-G. Organic Reactions in Ionic Liquids: Gewald Synthesis of 2-Aminothiophenes Catalyzed by Ethylenediammonium Diacetate. Synth. Commun. 2004, 34, 3801–3806. doi:10.1081/scc-200032526.
  • Su, C.; Chen, Z.-C.; Zheng, Q.-G. Organic Reactions in Ionic Liquids: Knoevenagel Condensation Catalyzed by Ethylenediammonium Diacetate. Synthesis 2003, 4, 555–559. doi:10.1055/s-2003-37643.
  • Syamala, M. Recent Progress in Three-Component Reactions. An Update. Org. Prep. Proced. Int. 2009, 41, 1–68. doi:10.1080/00304940802711218.
  • (a) Parvulescu, V. I.; Hardacre, C. Catalysis in Ionic Liquids. Chem. Rev. 2007, 107, 2615–2665. doi:10.1021/cr050948h. (b) Vahdat, S. M.; Baghery, S. Sulfonated Organic Salts: Recyclable Green Catalysts for the File and Rapid Route Synthesis of 2,3-Dissubstituted Quinoxaline Derivatives in Water. World Appl. Sci. J. 2013, 21, 394–401. doi:10.1002/chin.201228122.
  • (a) Gharib, A.; Jahangir, M.; Roshani, M.; Moghadasi, S.; Safee R., Catalytic Synthesis of Pyrazolo[3,4-d]pyrimidin-6-ol and pyrazolo[3,4-d]pyrimidine-6-thiol Derivatives Using Nanoparticles of NaX Zeolite as Green Catalyst. J. Catalysts 2013, 2013, 1–4. doi:10.1155/2013/657409. (b) Wang, H. B.; Hu, Y.-L.; Li, D.-J. Facile and Efficient Suzuki-Miyaura Coupling Reaction of Aryl Halides Catalyzed by Pd2(dba)3 in Ionic Liquid/Supercritical Carbon Dioxide Biphasic System. J. Mol. Liquids. 2016, 218, 429–433. doi:10.1016/j.molliq.2016.02.056.
  • Chavan, S. S.; Pedgaonkar, Y. Y.; Jadhav, A. J.; Degani, M. S. Microwave Accelerated Synthesis of 2-Aminothiophenes in Ionic Liquid via Three Component Gewald Reaction. Indian J. Chem. 2012, 43, 657.
  • (a) Wang, Y.; Dong, D.; Yang, Y.; Huang, J.; Ouyang, Y.; Liu, Q. A Facile and Convenient One-Pot Synthesis of Polysubstituted Thiophenes from 1,3-Dicarbonyl Compounds in Water. Tetrahedron 2007, 63, 2724–2728. doi:10.1016/j.tet.2006.12.090. (b) Hu, Y. L.; Fang, D. Efficient and Convenient Oxidation of Alcohols to Aldehydes and Ketones with Molecular Oxygen Mediated by In(NO3)3 in Ionic Liquid [C12mim][FeBr4]. Compt. Rend. Chim. 2015, 18, 614–618. doi:10.1016/j.crci.2014.11.002.
  • Zhang, M.-M.; Lu, L.; Zhou, Y.-J.; Wang, X.-S. Iodine-Catalyzed Synthesis of Pyrrolo[1,2-a]Quinazoline-3a-Carboxylic Acid Derivatives in Ionic Liquids. Res. Chem. Intermed. 2012, 52, 12897–12905.
  • Yadav, J. S.; Reddy, B. V. S.; Eeshwaraiah, B.; Gupta, M. K. Bi(OTf)3/[Bmim]BF4 as Novel and Reusable Catalytic System for the Synthesis of Furan, Pyrrole and Thiophene Derivatives. Tetrahedron Lett. 2004, 45, 5873–5876. doi:10.1016/j.tetlet.2004.05.152.
  • (a) Martins, M. A. P.; Frizzo, C. P.; Moreira, D. N.; Zanatta, N.; Bonacorso, H. G. Ionic Liquids in Heterocyclic Synthesis. Chem. Rev. 2008, 108, 2015–2050. doi:10.1021/cr078399y. (b) Kang, L.-Q.; Jin, D.-Y.; Cai, Y.-Q. Silica-Supported Ionic Liquid Si-[SbSipim][PF6]: An Efficient Catalyst for the Synthesis of 3,4-Dihydropyrimidine-2-(1H)-ones. Synth. Commun. 2013, 43, 1896–1901. doi:10.1080/00397911.2012.678462.
  • Andrade, C. K. Z.; Alves, L. M. Environmentally Benign Solvents in Organic Synthesis: current Topics. Coc. 2005, 9, 195–218. doi:10.2174/1385272053369178.
  • Shvekhgeimer, M.-G. A. Synthesis and Properties (review). Chem. Heterocycl. Compd. 1998, 34, 1101–1122. doi:10.1007/bf02319487.
  • McIntosh, J. M.; Goodbrand, H. B.; Masse, G. M. Dihydrothiophenes. II. Preparation and Properties of Some Alkylated 2,5-Dihydrothiophenes. J. Org. Chem. 1974, 39, 202–206. doi:10.1021/jo00916a017.
  • Leusen, A. M.; Berg, K. J. Formation and Reactions of 2,3-Dimethylene-2,3-Dihydrothiophene. Tetrahedron Lett 1988, 29, 2689–2692. doi:10.1016/0040-4039(88)85261-4.
  • Kumar, A.; Gupta, G.; Srivastava, S. Functional Ionic Liquid Mediated Synthesis (FILMS) of Dihydrothiophenes and Tacrine Derivatives. Green Chem. 2011, 13, 2459–2463. doi:10.1039/c1gc15410a.
  • Hu, Y.; Wei, P.; Huang, H.; Han, S.-Q.; Ouyang, P.-K. Synthesis of 2-Aminothiophenes on Ionic Liquid Phase Support Using the Gewald Reaction. Synth. Commun 2006, 36, 1543–1548. doi:10.1080/00397910600588819.
  • (a) Lütjens, H.; Zickgraf, A.; Figler, H.; Linden, J.; Olsson, R. A.; Scammells, P. J. 2-Amino-3 Benzoylthiophene Allosteric Enhancers of A1 Adenosine Agonist Binding: New 3, 4-, and 5-modifications. J. Med. Chem. 2003, 46, 1870–1877. doi:10.1021/jm020295m. (b) Wang, H. B.; Wang, N. Y. L.; Hu, Y. L. Brønsted-Lewis Dual Acidic Ionic Liquid Immobilized on Mesoporous Silica Materials as an Efficient Cooperative Catalyst for Mannich Reactions. New J. Chem. 2017, 41, 10528–10531. doi:10.1039/c7nj02541f.
  • (a) Hu, Y.; Wei, P.; Huang, H.; Han, S.-Q.; Ouyang, P.-K. Microwave-Assisted Gewald Synthesis of 2-Aminothiophenes Using Functional Ionic Liquid as Soluble Support. Heterocycles. 2006, 68, 375–380. doi:10.3987/com-05-10628. (b) Gao, X.; Yu, B.; Yang, Z.; Zhao, Y.; Zhang, H.; Hao, L.; Han, B.; Liu, Z. Ionic Liquid-Catalyzed C-S Bond Construction Using CO2 as a C1 Building Block Under Mild Conditions: A Metal-Free Route to Synthesis of Benzothiazoles. ACS Catal. 2015, 5, 6648–6652. doi:10.1021/acscatal.5b01874.
  • (a) Miwatashi, S.; Arikawa, Y.; Kotani, E.; Miyamoto, M.; Naruo, K.-I.; Kimura, H.; Tanaka, T.; Asahi, S.; Ohkawa, S. Novel Inhibitor of p38 MAP Kinase as an Anti-TNF-alpha Drug: Discovery of N-[4-[2-ethyl-4-(3-methylphenyl)-1,3-thiazol-5-yl]-2-pyridyl]benzamide (TAK-715) as a Potent and Orally Active Anti-rheumatoid Arthritis Agent. J. Med. Chem. 2005, 48, 5966–5979. doi:10.1021/jm050165o. (b) Nevagi, R. J.; Dighe, S. N.; Dighe, S. N.; Chaskar, P. K.; Srinivasan, K. V.; Jain, K. S. Use of Ionic Liquids as Neoteric Solvents in the Synthesis of Fused Heterocycles. Arch. Pharm. 2014, 347, 540–551. doi:10.1002/ardp.201400018.
  • Papadopoulou, C.; Geronikaki, A.; Hadjipavlou-Litina, D. Synthesis and Biological Evaluation of New Thiazolyl/Benzothiazolyl-Amides, Derivatives of 4-Phenyl-Piperazine. II Farmaco 2005, 60, 969–973. doi:10.1016/j.farmac.2005.06.014.
  • Kumar, Y.; Green, R.; Wise, D. S.; Wotring, L. L.; Townsend, L. B. Synthesis of 2,4-Disubstituted Thiazoles and Selenazoles as Potential Antifilarial and Antitumor Agents. 2. 2-Arylamido and 2-Alkylamido Derivatives of 2-Amino-4-(Isothiocyanatomethyl)Thiazole and 2-Amino-4-(Isothiocyanatomethyl)Selenazole. J. Med. Chem. 1993, 36, 3849–3852. doi:10.1021/jm00076a013.
  • (a) Ei-Subbagh, H. I.; Al-Obaid, A. M. 2,4-Disubstituted Thiazoles II. A Novel Class of Antitumor Agents, Synthesis and Biological Evaluation. Eur. J. Med. Chem. 1996, 31, 1017–1021. doi:10.1016/s0223-5234(97)86181-8. (b) Ghandi, K. A Review of Ionic Liquids, Their Limits and Applications. Green Sustain. Chem. 2014, 4, 44–53. doi:10.4236/gsc.2014.41008.
  • Pereira, R.; Gaudon, C.; Iglesias, B.; Germain, P.; Gronemeyer, H.; de Lera, A. R. Synthesis of the PPARbeta/Delta-Selective Agonist GW501516 and C4-Thiazole-Substituted Analogs. Bioorg. Med. Chem. Lett. 2006, 16, 49–54. doi:10.1016/j.bmcl.2005.09.060.
  • Tsurumi, Y. A.; Ueda, H. U.; Hayashi, K. I.; Takase, S. O.; Nishikawa, M. I.; Kiyoto, S. O.; Okuhara, M. I. WS75624-A and WS75624-B, New Endothelin-Converting Enzyme-Inhibitors Isolated from Saccharothrix sp. no-75624. 1. Taxonomy, Fermentation, Isolation, Physicochemical Properties and Biological-Activities. J. Antibiot. 1995, 48, 1066–1072. doi:10.7164/antibiotics.48.1066.
  • Millan, D. S.; Prager, R. H.; Brand, C.; Hart, P. H. The Synthesis and Activity of Oxazole and Thiazole Analogues of Urocanic Acid. Tetrahedron 2000, 56, 811–816. doi:10.1016/s0040-4020(00)00019-3.
  • Wang, W.-L.; Yao, D.-Y.; Gu, M.; Fan, M.-Z.; Li, J.-Y.; Xing, Y.-C.; Nan, F.-J. Synthesis and Biological Evaluation of Novel Bisheterocycle-Containing Compounds as Potential anti-Influenza Virus Agents. Bioorg. Med. Chem. Lett 2005, 15, 5284–5287. doi:10.1016/j.bmcl.2005.08.046.
  • Metzger, J. V. “Thiazoles and their Benzo Derivatives” In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.; Pergamon Press: New York, 1984, 6, 235–331. doi:10.1016/b978-008096519-2.00087-4.
  • (a) Hantzsch, A.; Weber, J. H. Hantzsch Thiazole Synthesis. Ber. Dtsch. Chem. Ges. 1887, 20, 3118. (b) Dandia, A.; Jain, A. K. Ionic Liquid-Mediated Facile Synthesis of Novel Spiroheterobicyclic Rings as Potential Antifungal and Antibacterial Drugs. J. Heterocyclic Chem. 2013, 50, 104–113. doi:10.1002/jhet.1002.
  • Aguilar, E.; Meyers, A. I. Reinvestigation of a Modified Hantzsch Thiazole Synthesis. Tetrahedron Lett 1994, 35, 2473–2476. doi:10.1016/s0040-4039(00)77147-4.
  • Varma, R. S. Solvent-Free Accelerated Organic Syntheses Using Microwaves. Pure Appl. Chem. 2001, 73, 193–198. doi:10.1351/pac200173010193.
  • Bergstrom, D. E.; Zhang, P.; Zhou, J. Synthesis of 2′-Deoxy-β-D-Ribofuranosyl Imidazole and Thiazole C-Nucleosides. Perkin Trans. 1 1994, 20, 3029–3034. doi:10.1039/p19940003029.
  • Martin, L. M.; Hu, B.-H. Thiazole and Oxazole Building Blocks for Combinatorial Synthesis. Tetrahedron Lett. 1999, 40, 7951–7953. doi:10.1016/s0040-4039(99)01654-8.
  • You, S.-L.; Kelly, J. W. Total Synthesis of Dendroamide A: oxazole and Thiazole Construction Using an Oxodiphosphonium Salt. J. Org. Chem. 2003, 68, 9506–9509. doi:10.1021/jo0302657.
  • Kazmaier, U.; Ackermann, S. A Straightforward Approach towards Thiazoles and Endothiopeptides via Ugi Reaction. Org. Biomol. Chem. 2005, 3, 3184–3187. doi:10.1039/b507028g.
  • Mustafa, S. M.; Nair, V. A.; Chittoor, J. P.; Krishnapillai, S. Synthesis of 1,2,4-Triazoles and Thiazoles from Thiosemicarbazide and Its Derivatives. Mini-Rev. Org. Chem. 2004, 1, 375–385. doi:10.2174/1570193043403082.
  • Walek, W.; Pallas, M.; Augustin, M. Beiträge Zum Reaktionsverhalten Von Derivaten Der imidodithiokohlensäure-I: cyclisierungsreaktionen Mit Kalium-Alkyl-Cyanimidodithiocarbonaten. Tetrahedron 1976, 32, 623–627. doi:10.1016/s0040-4020(01)93783-4.
  • Golankiewicz, B.; Januszczyk, P.; Gdaniec, M.; Kosturkiewicz, Z. Reaction of Acylaminocyanoesters with 2,4-Bis (4-Methoxyphenyl)-1,3,2,4-Dithiadiphosphetane 2,4-Disulfide Leading to Substituted Aminothiazoles. Crysta. Tetrahedron 1985, 41, 5989–5994. doi:10.1016/s0040-4020(01)91439-5.
  • Lin, Y.-I.; Seifert, C. M.; Kang, S. M.; Dusza, J. P.; Lang, S. A. The Synthesis of Substituted 2‐Aminothiazoles. J. Heterocycl. Chem 1979, 16, 1377–1383. doi:10.1002/jhet.5570160718.
  • Short, K. M.; Ziegler, C. B. An Addition-Elimination Strategy for the Synthesis of Oxazoles. Tetrahedron Lett 1993, 34, 71–74. doi:10.1016/s0040-4039(00)60060-6.
  • Wardakhan, W. W.; Elkholy, Y. M. One-Pot Synthesis of Thiazoles from Pyridazin-3-Hydrazidic Acid Derivatives. Phosphorus, Sulfur, Silicon Relat. Elem 2002, 177, 2661–2673. doi:10.1080/10426500214556.
  • Hermitage, S. A.; Cardwell, K. S.; Chapman, T.; Cooke, J. W. B.; Newton, R. An Efficient, Practical Approach to the Synthesis of 2,4-Disubstituted Thiazoles and Oxazoles: application to the Synthesis of GW475151. Org. Process Res. Dev. 2001, 5, 37–44. doi:10.1021/op000086g.
  • Ochiai, M.; Nishi, Y.; Hashimoto, S.; Tsuchimoto, Y.; Chen, D.-W. Synthesis of 2,4-Disubstituted Thiazoles from (Z)-(2-Acetoxyvinyl)Phenyl-λ3-Iodanes: nucleophilic Substitution of α-λ3-Iodanyl Ketones with Thioureas and Thioamides. J. Org. Chem. 2003, 68, 7887–7888. doi:10.1021/jo020759o.
  • Kobryanskii, V. M.; Arnautov, S. A. Chemical Synthesis of Polyphenylene in an Ionic Liquid: The Possibility of Relative Molecular Mass Regulation. J. Chem. Soc, Chem. Commun. 1992, 9, 727–728. doi:10.1039/c39920000727.
  • Arnautov, S. A. Electrochemical Synthesis of Polyphenylene in a New Ionic Liquid. Synth. Metals 1997, 84, 295–296. doi:10.1016/s0379-6779(97)80758-8.
  • Goldenberg, L. M.; Osteryoung, R. A. Benzene Polymerization in 1-Ethyl-3-Methylimidazolium chloride-AlCl3 Ionic Liquid. Synth. Metals 1994, 64, 63–68. doi:10.1016/0379-6779(94)90276-3.
  • (a) Houa, R.-S.; Wang, H.-M. Synthesis of 2-phenylthiazoles from Tosyloxyketones and Thiobenzamide in [Bmim][PF6] Ionic Liquid at Ambient Temperature. J. Chinese Chem. Soc. 2006, 53, 863–866. doi:10.1002/jccs.200600114. (b) Hu, Y.-L.; Li, D.-J.; Li, D.-S. Efficient and Convenient Oxidation of Aldehydes and Ketones to Carboxylic Acids and Esters with H2O2 catalyzed by Co4HP2Mo15V3O62 in ionic liquid [TEBSA][BF4]. RSC Adv. 2015, 5, 24936–24943. doi:10.1039/c5ra02234g.
  • (a) Kroutil, J.; Budesınsky, M. Preparation of Diamino Pseudodisaccharide Derivatives from 1,6-anhydro-b-D-hexopyranoses via aziridine-ring cleavage. Carbohydrate Res. 2007, 342, 147–153. doi:10.1016/j.carres.2006.11.028. (b) Hu, Y.-L.; Lu, M.; Yang, X.-L. Highly Efficient Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides Catalyzed by Ionic Liquid [Heemim][ZrCl5]. RSC Adv. 2015, 5, 67886–67891. doi:10.1039/c5ra11786k.
  • Lingampalle, D.; Jawale, D.; Waghmare, R.; Mane, R. Ionic Liquid-Mediated, One-Pot Synthesis for 4-Thiazolidinones. Synth. Commun 2010, 40, 2397–2401. doi:10.1080/00397910903245174.
  • (a) Llinas-Brunet, M.; Bailey, M. D.; Ghiro, E.; Gorys, V.; Halmos, T.; Poirier, M.; Rancourt, J.; Goudreau, N. A Systematic Approach to the Optimization of Substrate-Based Inhibitors of the Hepatitis C virus NS3 Protease: Discovery of Potent and Specific Tripeptide Inhibitors. J. Med. Chem. 2004, 47, 6584–6594. doi:10.1021/jm0494523. (b) Rawal, R. K.; Tripathi, R.; Katti, S. B.; Pannecouque, C.; Clercq, E. D. Design, Synthesis, and Evaluation of 2-aryl-3-heteroaryl-1,3-thiazolidin-4-ones as Anti-HIV Agents. Bioorg. Med. Chem. 2007, 15, 1725–1731. doi:10.1016/j.bmc.2006.12.003. (c) Srivastava, T.; Gaikwad, A. K.; Haq, W.; Sinha, S.; Katti, S. B. Synthesis and Biological Evaluation of 4-thiazolidinone Derivatives as Potential Antimycobacterial Agents (NA-1265FP). Arkivoc, 2005, 2, 120–130. doi:10.3998/ark.5550190.0006.209.
  • (a) Huang, L. J.; Hsich, M. C.; Teng, C. M.; Lee, K. H.; Kno, S. C. Synthesis and Antiplatelet Activity of Phenyl Quinolones. Bioorg. Med. Chem. 1998, 6, 1657–1662. doi:10.1016/s0968-0896(98)00141-2. (b) Veeresena, G.; Vie, N.; James, T. D.; Duane, D. M. Efficient Microwave Enhanced Synthesis of 4-Thiazolidinones. Synth. Lett. 2004, 13, 2357–2358. doi:10.1055/s-2004-832811. (c) Ding, M.; Guo, H. Ionic liquid Catalyzed One‐Pot Synthesis of 2H‐pyridazino[1,2‐a]indazole‐1,6,9(11H)‐triones via Three‐Component Reaction Under Solvent‐Free Conditions. J. Heterocycl. Chem. 2016, 53, 2061–2065. doi:10.1002/jhet.1736.
  • (a) Theeraladanon, C.; Arisawa, M.; Nishidi, A.; Nakagawa, M. A Novel Synthesis of Substituted Quinolines Using Ring-Closing Metathesis (RCM): Its Application to the Synthesis of Key Intermediates for Anti-malarial Agents. Tetrahedron. 2004, 60, 3017–3035. doi:10.1016/j.tet.2004.01.084. (b) Cao, D.; Zhang, Y.; Liu, C.; Wang, B.; Sun, Y.; Abdukadera, A.; Hu, H.; Liu, Q. Ionic Liquid Promoted Diazenylation of N-heterocyclic Compounds with Aryltriazenes Under Mild Conditions. Org. Lett. 2016, 18, 2000–2003. doi:10.1021/acs.orglett.6b00605.
  • Yadav, A. K.; Kumar, M.; Yadav, T.; Jain, R. An Ionic Liquid Mediated One-Pot Synthesis of Substituted Thiazolidinones and Benzimidazoles. Tetrahedron Lett. 2009, 50, 5031–5034. doi:10.1016/j.tetlet.2009.06.091.
  • Gu, Y.; Li, G. Ionic Liquids‐Based Catalysis with Solids: State of the Art. Adv. Synth. Catal. 2009, 351, 817–847. doi:10.1002/adsc.200900043.
  • Fraga-Dubreuil, J.; Bazureau, J. P. Grafted Ionic Liquid-Phase-Supported Synthesis of Small Organic Molecules. Tetrahedron Lett 2001, 42, 6097–6100. doi:10.1016/s0040-4039(01)01190-x.
  • Fraga-Dubreuil, J.; Bazureau, J. P. Efficient Combination of Task-Specific Ionic Liquid and Microwave Dielectric Heating Applied to One-Pot Three Component Synthesis of a Small Library of 4-Thiazolidinones. Tetrahedron. 2003, 59, 6121–6130. doi:10.1016/s0040-4020(03)00954-2.
  • (a) Fraga-Dubreuil, J.; Famelart, M. H.; Bazureau, J. P. Ecofriendly Fast Synthesis of Hydrophilic Poly(ethyleneglycol)-Ionic Liquid Matrices for Liquid-Phase Organic Synthesis. Org. Process Res. Dev. 2002, 6, 374–378. doi:10.1021/op020027y. (b) Yao, N.; Lu, M.; Liu, X. B.; Tan, J.; Hu, Y. L. Copper-Doped Mesoporous Silica Supported Dual Acidic Ionic Liquid as an Efficient and Cooperative Reusability Catalyst for Biginelli Reaction. J. Mol. Liquids. 2018, 262, 328–335. doi:10.1016/j.molliq.2018.04.121. (c) Hu, Y.-L.; Fang, D.; Li, D.-S. Novel and Efficient Heterogeneous 4-Methylbenzenesulfonic Acid-Based Ionic Liquid Supported on Silica Gel for Greener Fischer Indole Synthesis. Catal. Lett. 2016, 146, 968–976. doi:10.1007/s10562-016-1721-x.
  • Isambert, N.; Duque, M. M. S.; Plaquevent, J.-C.; Genisson, Y.; Rodriguez, J.; Constantieux, T. Multicomponent Reactions and Ionic Liquids: A Perfect Synergy for Eco-Compatible Heterocyclic Synthesis. Chem. Soc. Rev 2011, 40, 1347–1357. doi:10.1039/c0cs00013b.
  • Yadav, L. D. S.; Yadav, B. S.; Rai, V. K. Multicomponent Reactions in Chiral Ionic Liquids: A Stereocontrolled Route to Mercaptopyranothiazoles. J. Heterocycl. Chem 2008, 45, 1315–1319. doi:10.1002/jhet.5570450510.
  • Noei, J.; Khosropour, A. R. Ultrasound-Promoted a Green Protocol for the Synthesis of 2,4-Diarylthiazoles under Ambient Temperature in [Bmim]BF4. Ultrason. Sonochem 2009, 16, 711–717. doi:10.1016/j.ultsonch.2009.04.001.
  • (a) Izumisawa, Y.; Togo, H. Preparation of α-bromoketones and Thiazoles from Ketones with NBS and Thioamides in Ionic Liquids. Green and Sustain. Chem. 2011, 1, 54–62. doi:10.4236/gsc.2011.13010. (b) Yao, N.; Wang, H. B.; Hu, Y. L. Recent Progress on Electrochemical Application of Room-Temperature Ionic Liquids. Mini Rev. Org. Chem. 2017, 14, 237–254. doi:10.2174/1570193x14666170420115644.
  • Bryce, M. R.; Coates, H. M.; Cooper, J.; Murphy, L. C. A New Route to 1,4-Disubstituted Cyclohexa-1,3-Diene Derivatives: The Synthesis of a Highly Conjugated Bisbenzothiazoline Derivative. J. Org. Chem. 1984, 49, 3399–3401. doi:10.1021/jo00192a035.
  • Jain, N.; Kumar, A.; Chauhan, S.; Chauhan, S. M. S. Chemical and Biochemical Transformations in Ionic Liquids. Tetrahedron 2005, 61, 1015–1060. doi:10.1016/j.tet.2004.10.070.
  • Maradolla, M. B.; Allam, S. K.; Mandha, A.; Chandramouli, G. V. P. One Pot Synthesis of Benzoxazoles, Benzthiazoles and Benzimidazoles from Carboxylic Acids Using Ionic Liquids. ARKIVOC 2008, 15, 42–46. doi:10.3998/ark.5550190.0009.f05.
  • Mohammadpoor-Baltork, I.; Khosropour, A. R.; Hojati, S. F. Mild and Efficient Synthesis of Benzoxazoles, Benzothiazoles, Benzimidazoles, and Oxazolo [4, 5-b] Pyridines Catalyzed by Bi (III) Salts under Solvent-Free Conditions. Monatsh. Chem. 2007, 138, 663–667. doi:10.1007/s00706-007-0655-9.
  • Zhang, Z.-H.; Yin, L.; Wang, Y.-M. An Expeditious Synthesis of Benzimidazole Derivatives Catalyzed by Lewis Acids. Catal. Commun 2007, 8, 1126–1131. doi:10.1016/j.catcom.2006.10.022.
  • Zhang, Z.-H.; Li, T.-S.; Li, J.-J. A Highly Effective Sulfamic Acid/Methanol Catalytic System for the Synthesis of Benzimidazole Derivatives at Room Temperature. Monatsh. Chem. 2007, 138, 89–94. doi:10.1007/s00706-006-0566-1.
  • Aridoss, G.; Laali, K. K. Building Heterocyclic Systems with RC(OR)2 + Carbocations in Recyclable Brønsted Acidic Ionic Liquids: facile Synthesis of 1-Substituted 1H-1,2,3,4-Tetrazoles, Benzazoles and Other Ring Systems with CH(OEt)3 and EtC(OEt)3 in [EtNH3][NO3] and [PMIM(SO3H)][OTf]. Eur. J. Org. Chem 2011, 15, 2827–2835. doi:10.1002/ejoc.201100128.
  • Zhang, M.; Xiong, B.; Wang, T.; Ding, Y.; Wang, L. Efficient One-Pot Synthesis of 2-Alkylquinolines under Solvent-Free Conditions Using Sulfonic Acid Functionalized Ionic Liquid as a Recoverable and Reusable Catalyst. Heterocycles 2011, 83, 2289–2298. doi:10.3987/com-11-12289.
  • Nadaf, R. N.; Siddiqui, S. A.; Daniel, T.; Lahoti, R. J.; Srinivasan, K. V. Room Temperature Ionic Liquid Promoted Regioselective Synthesis of 2-Aryl Benzimidazoles, Benzoxazoles and Benzthiazoles under Ambient Conditions. J. Mol. Catal. A: Chem 2004, 214, 155–160. doi:10.1016/j.molcata.2003.10.064.
  • (a) Yan, M.; Chen, Z.-C.; Zheng, Q.-G. Organic Reactions in Ionic Liquids: Oxidative Dimerisation of Thioamides with Phenyliodine(III) Diacetate. J. Chem. Res. 2003, 10, 618–619. doi:10.3184/030823403322655842. (b) Boroujeni, K. P.; Zhianinas, A.; Jafarinasa, M. Polystyrene-Supported Pyridinium Chloroaluminate Ionic Liquid as a New Heterogeneous Lewis Acid Catalyst for Selective Synthesis of Benzimidazoles. J. Serb. Chem. Soc. 2013, 78, 155–164. doi:10.2298/jsc120401089p.
  • Carballo, R. M.; Ramirez, M. A.; Rodriguez, M. L.; Martin, V. S.; Padrón, J. I. Iron(III)-Promoted aza-Prins-Cyclization: Direct Synthesis of Six-Membered Azacycles. Org. Lett. 2006, 8, 3837–3840. doi:10.1021/ol061448t.
  • Murty, M. S. R.; Ram, K. R.; Yadav, J. S. BiCl3 Promoted aza-Prins Type Cyclization: A Rapid and Efficient Synthesis of 2,4-Disubstituted Piperidines. Tetrahedron Lett 2008, 49, 1141–1145. doi:10.1016/j.tetlet.2007.12.072.
  • (a) Kishi, Y.; Nagura, H.; Inagi, S.; Fuchigami, T. Facile and Highly Efficient Synthesis of Fluorinated Heterocycles via Prinscyclization in Ionic Liquid Hydrogen Fluoride Salts. Chem. Commun. 2008, 3876–3878. doi:10.1039/b806389c. (b) Boroujeni, K. P.; Ghasemi, P. Synthesis and Application of a Novel Strong and Stable Supported Ionic Liquid Catalyst with Both Lewis and Brønsted Acid Sites. Catal. Commun. 2013, 37, 50–54. doi:10.1016/j.catcom.2013.03.025.
  • (a) de Groot, M. J.; Alex, A. A.; Jones, B. C. Development of a Combined Protein and Pharmacophore Model for Cytochrome P450 2C9. J. Med. Chem. 2002, 45, 1983–1993. doi:10.1021/jm0110791. (b) Pathak, A. K.; Ameta, C.; Ameta, R.; Punjabi, P. B. Microwave‐Assisted Organic Synthesis in Ionic Liquids. J. Heterocycl. Chem. 2016, 53, 1697–1705. doi:10.1002/jhet.2515.
  • Lee, M.; Hesek, D.; Mobashery, S. A Practical Synthesis of Nitrocefin. J. Org. Chem. 2005, 70, 367–369. doi:10.1021/jo0487395.
  • Flynn, B. L.; Flynn, G. P.; Hamel, E.; Jung, M. K. The Synthesis and Tubulin Binding Activity of Thiophene-Based Analogues of Combretastatin A-4. Bioorg. Med. Chem. Lett 2001, 11, 2341–2343. doi:10.1016/s0960-894x(01)00436-x.
  • Zhang, X.; Li, X.; Fan, X.; Wang, X.; Li, D.; Qu, G.; Wang, J. Ionic Liquid Promoted Preparation of 4H-Thiopyran and Pyrimidine Nucleoside-Thiopyran Hybrids through One-Pot Multi-Component Reaction of Thioamide. Mol. Divers. 2009, 13, 57–61. doi:10.1007/s11030-008-9098-4.
  • (a) Banerjee, B. [Bmim]BF4: A Versatile Ionic Liquid for the Synthesis of Diverse Bioactive Heterocycles. Chem. Select. 2017, 2, 8362–8376. doi:10.1002/slct.201701700. (b) Hu, Y. L.; Xing, R. Highly Efficient and Convenient Supported Ionic Liquid TiCl5-DMIL@SiO2@Fe3O4-Catalyzed Cycloaddition of CO2 and Epoxides to Cyclic Carbonates. Catal. Lett. 2017, 147, 1453–1463. doi:10.1007/s10562-017-2051-3.
  • Sharma, R.; Abdullaha, M.; Bharate, S. B. Metal‐Free Ionic‐Liquid‐Mediated Synthesis of Benzimidazoles and Quinazolin‐4(3H)‐Ones from Benzylamines. Asian J. Org. Chem. 2017, 6, 1370–1374. doi:10.1002/ajoc.201700214.
  • Pagni, R. M. Advances in Molten Salt Chemistry. (G. Mamantov, J. Braunstein, eds.), Oxford: Elsevier United States; 1987, 6, 211–346.
  • Smith, G. P.; Pagni, R. M. Molten Salt Chemistry, An Introduction to Selected Applications (G. Mamantov, R. Marassi, eds.), Dordrecht: D. Reidel Publishing Co.; 1987, 383–416. doi:10.1007/978-94-009-3863-2_18.
  • (a) Yadav, L. D. S.; Rai, V. K.; Yadav, B. S. The First Ionic Liquid-Promoted One-Pot Diastereoselective Synthesis of 2,5-diamino-/2-amino-5-mercapto-1,3-thiazin-4-ones Using Masked Amino/Mercapto Acids. Tetrahedron, 2009, 65, 1306–1315. doi:10.1016/j.tet.2008.12.050. (b) Yao, N.; Wu, Y. P.; Zheng, K. B.; Hu, Y. L. Recent Advances in Catalytic Condensation Reactions Applications of Supported Ionic Liquids. Curr. Org. Chem. 2018, 22, 462–484. doi:10.2174/1385272821666171106144935.
  • Baudequin, C.; Baudoux, J.; Levillain, J.; Cahard, D.; Gaumont, A.-C.; Plaquevent, J.-C. Ionic Liquids and Chirality: Opportunities and Challenges. Tetrahedron: Asymmetry 2003, 14, 3081–3093. doi:10.1016/s0957-4166(03)00596-2.
  • Luo, S.; Zhang, L.; Cheng, J.-P. Functionalized Chiral Ionic Liquids: A New Type of Asymmetric Organocatalysts and Nonclassical Chiral Ligands. Chem. Asian J. 2009, 4, 1184–1195. doi:10.1002/asia.200900080.
  • (a) Ramon, D. J.; Yus, M. Asymmetric Multicomponent Reactions (AMCRs): The New Frontier. Angew. Chem. Int. Ed. 2005, 44, 1602–1634. doi:10.1002/anie.200460548. (b) Yang, Q.; Zhang, Z.; Sun, X. G.; Hu, Y. S.; Xing, H.; Dai, S. Ionic Liquids and Derived Materials for Lithium and Sodium Batteries. Chem. Soc. Rev. 2018, 47, 2020–2064. doi:10.1039/c7cs00464h.
  • Yadav, L. D. S.; Rai, A.; Rai, V. K.; Awasthi, C. Chiral Ionic Liquid-Catalyzed Biginelli Reaction: stereoselective Synthesis of Polyfunctionalized Perhydropyrimidines. Tetrahedron 2008, 64, 1420–1429. doi:10.1016/j.tet.2007.11.044.
  • (a) Krapcho, J.; Szabo, A.; William, J. Synthesis of Substituted 2-phenyl-1,4-benzothiazin-3(4H)-ones and Their Activity as Inhibitors of 1,4-dipyrrolidino-2-butyne. J. Med. Chem. 1963, 6, 214–216. doi:10.1021/jm00338a036. (b) Zarnegar, Z.; Safari, J. Heterogenization of an Imidazolium Ionic Liquid Based on Magnetic Carbon Nanotubes as a Novel Organocatalyst for the Synthesis of 2-Amino-Chromenes via a Microwave-Assisted Multicomponent Strategy. New J. Chem. 2016, 40, 7986–7995. doi:10.1039/c6nj01631f.
  • Sharifi, A.; Abaee, M. S.; Rouzgard, M.; Mirzaei, M. Ionic Liquid [Bmim][NO3], an Efficient Medium for Green and One-Pot Synthesis of Benzothiazinones at Room-Temperature. Scientia Iranica 2013, 44, 555–560.
  • Coutts, R. T.; Barton, D. L.; Smith, E. M. Organic Sulfur Compounds: II. Catalyzed Sodium Borohydride Reductions of Selected α-(o-Nitrophenylthio) Acids. Can. J. Chem. 1966, 44, 1733–1741. doi:10.1139/v66-262.
  • (a) Sakamoto, M.; Akimoto, T.; Fukutomi, K.; Ishii, K. Addition Reactions of Diketene. IV. Reaction of Diketene with Thioureas, Thioamide, and Aminothiol. Chem. Pharm. Bull. 1984, 32, 2516–2521. doi:10.1248/cpb.32.2516. (b) Liu, X.; Hu, Y.; Fu, W. Basic Ionic Liquid as Catalyst in Synthesis of Dimethyl 4-(2-(2,6-bis(methoxycarbonyl)pyridine-4-yl)vinyl)pyridine-2,6-Dicarboxylate. J. Chem. 2018, 2018, 1–4. doi:10.1155/2018/9536838.
  • Tandon, V.; Mishra, A. K.; Chhikara, B. S. KF-Alumina Immobilized in Ionic Liquids: A Novel Heterogeneous Base for Heterocyclization of Alkylsulfanylphenylamines into 1,4-Benzothiazine. Heterocycles 2004, 63, 1057–1066. doi:10.3987/com-04-10003.
  • (a) Miyano, S.; Abe, N.; Sumoto, K.; Teramoto, K. Reactions of Enamino-Ketones. Part II. Synthesis of 4H-1,4-benzothiazines. Perkin Trans. I. 1976, 1146–1149. doi:10.1039/p19760001146. (b) Alvim, H. G. O.; Correa, J. R.; Assumpçao, J. A. F.; da Silva, W. A.; Rodrigues, M. O.; de Macedo, J. L.; Fioramonte, M.; Gozzo, F. C.; Gatto, C. C.; Neto, B. A. D. Heteropolyacid-Containing Ionic Liquid-Catalyzed Multicomponent Synthesis of Bridgehead Nitrogen Heterocycles: Mechanisms and Mitochondrial Staining. J. Org. Chem. 2018, 83, 4044–4053. doi:10.1021/acs.joc.8b00472.
  • Siddiqui, I. R.; Shireen, Shamim, S.; Abumhdi, A. A. H.; Waseem, M. A.; Srivastava, A.; Rahila.; Srivastava, A. Ionic Liquid Promoted Spiroannulation via hetero-Michael Addition and Intramolecular Heterocyclisation. New J. Chem. 2013, 37, 1258–1263. doi:10.1039/c3nj41070f.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.