179
Views
33
CrossRef citations to date
0
Altmetric
Reviews

Synthetic routes to seven and higher membered S-heterocycles by use of metal and nonmetal catalyzed reactions

Pages 186-209 | Received 04 Sep 2018, Accepted 16 Oct 2018, Published online: 22 Feb 2019

References

  • Balaban, A. T.; Oniciu, D. C.; Katritzky, A. R. Aromaticity as a Cornerstone in Heterocyclic Chemistry. Chem. Rev. 2004, 104, 2777–2812. doi: 10.1021/cr0306790.
  • (a) Martins, M. A. P.; Cunico, W.; Pereira, C. M. P.; Flores, A. F. C.; Bonacorso, H. G.; Zanatta, N. 4-Alkoxy-1,1,1-Trichloro-3-Alken-2-Ones: preparation and Applications in Heterocyclic Synthesis. Curr. Org. Synth 2004, 1, 391–403. doi: 10.2174/1570179043366611. (b) Majumdar, P.; Pati, A.; Patra, M.; Behera, R. K.; Behera, A. K. Acid Hydrazides, Potent Reagents for Synthesis of Oxygen-, Nitrogen-, and/or Sulfur-Containing Heterocyclic Rings. Chem. Rev 2014, 114, 2942–2977. doi: 10.1021/cr300122t.
  • Domling, A. Recent Developments in Isocyanide Based Multi-Component Reactions in Applied Chemistry. Chem. Rev 2006, 106, 17–89. doi: 10.1021/cr0505728.
  • (a) Kaur, N. Benign Approaches for the Microwave-Assisted Synthesis of Five-Membered 1,2-N,N-Heterocycles. J. Heterocycl. Chem 2015, 52, 953–973. doi: 10.1002/jhet.2129. (b) Kaur, N. Methods for Metal and Non-Metal Catalyzed Synthesis of Six-Membered Oxygen Containing Poly-Heterocycles. Curr. Org. Synth 2017, 14, 531–556. doi: 10.2174/1570179413666161021104. (c) Kaur, N.; Photochemical Reactions: synthesis of Six-Membered N-Heterocycles. Curr. Org. Synth 2017, 14, 972–998. doi: 10.2174/15701179414666170201150701. (d) Kaur, N. Ionic Liquids: promising but Challenging Solvents for the Synthesis of N-Heterocycles. Mini Rev. Org. Chem 2017, 14, 3-23. doi: 10.2174/1570193X13666161019120. (e) Kaur, N. Metal Catalysts for the Formation of Six-Membered N-Polyheterocycles. Synth. React. Inorg. Met. Org. Nano-Met. Chem 2016, 46, 983–1020. doi: 10.1080/15533174.2014.989620. (f) Kaur, N. Applications of Gold Catalysts for the Synthesis of Five-Membered O-Heterocycles. Inorg. Nano-Met. Chem 2017, 47, 163–187. doi: 10.1080/15533174.2015.1068809. (g) Orru, R. V. A.; de Greef, M. Recent Advances in Solution-Phase Multi-Component Methodology for the Synthesis of Heterocyclic Compounds. Synthesis 2003, 10, 1471–1499. doi: 10.1055/s-2003-40507. (h) Kaur, N. Ruthenium Catalysis in Six-Membered O-Heterocycles Synthesis. Synth. Commun 2018, 48, 1551–1587. doi: 10.1080/00397911.2018.1457698. (i) Kaur, N. Green Synthesis of Three to Five-Membered O-Heterocycles Using Ionic Liquids. Synth. Commun 2018, 48, 1588–1613. doi: 10.1080/00397911.2018.1458243. (j) Kaur, N. Ultrasound-Assisted Green Synthesis of Five-Membered O- and S-Heterocycles. Synth. Commun 2018, 48, 1715–1738. doi: 10.1080/00397911.2018.1460671. (k) Kaur, N. Photochemical Mediated Reactions in Five-Membered O-Heterocycles Synthesis. Synth. Commun 2018, 48, 2119–2149. doi: 10.1080/00397911.2018.1485165.
  • (a) Kaur, N. Palladium-Catalyzed Approach to the Synthesis of Five-Membered O-Heterocycles. Inorg. Chem. Commun 2014, 49, 86–119. doi: 10.1016/j.inoche.2014.09.024. (b) Kaur, N.; Kishore, D. Nitrogen-Containing Six-Membered Heterocycles: solid-Phase Synthesis. Synth. Commun 2014, 44, 1173–1211. doi: 10.1080/00397911.2012.760129. (c) Kaur, N.; Kishore, D. Solid-Phase Synthetic Approach toward the Synthesis of Oxygen Containing Heterocycles. Synth. Commun 2014, 44, 1019–1042. doi: 10.1080/00397911.2012.760131. (d) Kaur, N. Microwave-Assisted Synthesis of Five Membered O-Heterocycles. Synth. Commun 2014, 44, 3483–3508. doi: 10.1080/00397911.2013.800213. (e) Kaur, N. Microwave-Assisted Synthesis of Five Membered O,N-Heterocycles. Synth. Commun 2014, 44, 3509–3537. doi: 10.1080/00397911.2013.800214. (f) Kaur, N. Microwave-Assisted Synthesis of Five Membered O,N,N-Heterocycles. Synth. Commun 2014, 44, 3229–3247. doi: 10.1080/00397911.2013.798666. (g) Kaur, N. Palladium-Catalyzed Approach to the Synthesis of S-Heterocycles. Catal. Rev 2015, 57, 478–564. doi: 10.1080/01614940.2015.1082824.
  • (a) Kaur, N. Metal Catalysts: applications in Higher Membered N-Heterocycles Synthesis. J. Iran. Chem. Soc 2015, 12, 9–45. doi: 10.1007/s13738-014-0451-5. (b) Kaur, N. Insight into Microwave-Assisted Synthesis of Benzo Derivatives of Five Membered N,N-Heterocycles. Synth. Commun 2015, 45, 1269–1300. doi: 10.1080/00397911.2013.827725. (c) Kaur, N. Synthesis of Fused Five-Membered N,N-Heterocycles Using Microwave Irradiation. Synth. Commun 2015, 45, 1379–1410. doi: 10.1080/00397911.2013.828078. (d) Kaur, N. Microwave-Assisted Synthesis of Seven Membered S-Heterocycles. Synth. Commun 2014, 44, 3201–3228. doi: 10.1080/00397911.2013.798665. (e) Kaur, N. Six Membered N-Heterocycles: microwave-Assisted Synthesis. Synth. Commun 2015, 45, 1–34. doi: 10.1080/00397911.2013.813548. (f) Kaur, N. Polycyclic Six Membered N-Heterocycles: microwave-Assisted Synthesis. Synth. Commun 2015, 45, 35–69. doi: 10.1080/00397911.2013.813549. (g) Kaur, N. Synthesis of Six and Seven-Membered Heterocycles under Ultrasound Irradiation. Synth. Commun 2018, 48, 1235–1258. doi: 10.1080/00397911.2018.1434894. (h) Kaur, N. Photochemical Reactions as Key Steps in Five-Membered N-Heterocycles Synthesis. J. Iran. Chem. Soc. 2015, 12, 9–1284. doi: 10.1080/00397911.2018.1443218.
  • (a) Kaur, N. Microwave-Assisted Synthesis: fused Five Membered N-Heterocycles. Synth. Commun 2015, 45, 789–823. doi: 10.1080/00397911.2013.824984. (b) Kaur, N. Six Membered Heterocycles with Three and Four N-Heteroatoms: microwave-Assisted Synthesis. Synth. Commun 2015, 45, 151–172. doi: 10.1080/00397911.2013.813550. (c) Kaur, N. Application of Microwave-Assisted Synthesis in the Synthesis of Fused Six-Membered Heterocycles with N-Heteroatom. Synth. Commun 2015, 45, 173–201. doi: 10.1080/00397911.2013.816734. (d) Kaur, N. Microwave-Assisted Synthesis of Fused Polycyclic Six Membered N-Heterocycles. Synth. Commun 2015, 45, 273–299. doi: 10.1080/00397911.2013.816735. (e) Kaur, N. Review of Microwave-Assisted Synthesis of Benzo Fused Six-Membered N,N-Heterocycles. Synth. Commun 2015, 45, 300–330. doi: 10.1080/00397911.2013.816736. (f) Kaur, N.; Kishore, D. Synthetic Strategies Applicable in the Synthesis of Privileged Scaffold: 1,4-Benzodiazepine. Synth. Commun 2014, 44, 1375–1413. doi: 10.1080/00397911.2013.772202.
  • (a) Kaur, N. Environmentally Benign Synthesis of Five Membered 1,3-N,N-Heterocycles by Microwave Irradiation. Synth. Commun 2015, 45, 909–943. doi: 10.1080/00397911.2013.825808. (b) Kaur, N. Advances in Microwave-Assisted Synthesis for Five Membered N-Heterocycles Synthesis. Synth. Commun 2015, 45, 432–457. doi: 10.1080/00397911.2013.824982. (c) Kaur, N. Microwave-Assisted Synthesis of Five Membered S-Heterocycles. J. Iran. Chem. Soc 2014, 11, 523–564. doi: 10.1007/s13738-013-0325-2. (d) Kaur, N. Review on the Synthesis of Six Membered N,N-Heterocycles by Microwave Irradiation. Synth. Commun 2015, 45, 1145–1182. doi: 10.1080/00397911.2013.827208. (e) Kaur, N. Greener and Expeditious Synthesis of Fused Six-Membered N,N-Heterocycles Using Microwave Irradiation. Synth. Commun 2015, 45, 1493–1519. doi: 10.1080/00397911.2013.828236. (f) Kaur, N. Applications of Microwaves in the Synthesis of Polycyclic Six Membered N,N-Heterocycles. Synth. Commun 2015, 45, 1599–1631. doi: 10.1080/00397911.2013.828755. (g) Kaur, N. Synthesis of Five-Membered N,N,N- and N,N,N,N-Heterocyclic Compounds: applications of Microwaves. Synth. Commun 2015, 45, 1711–1742. doi: 10.1080/00397911.2013.828756.
  • Patil, N. T.; Yamamoto, Y. Coinage Metal-Assisted Synthesis of Heterocycles. Chem. Rev. 2008, 108, 3395–3442. doi: 10.1021/cr050041j.
  • (a) Kaur, N. Role of Microwaves in the Synthesis of Fused Five Membered Heterocycles with Three N-Heteroatoms. Synth. Commun 2015, 45, 403–431. doi: 10.1080/00397911.2013.824981. (b) Kaur, N. Recent Impact of Microwave-Assisted Synthesis on Benzo Derivatives of Five Membered N-Heterocycles. Synth. Commun 2015, 45, 539–568. doi: 10.1080/00397911.2013.824983. (c) Kaur, N.; Kishore, D. Microwave-Assisted Synthesis of Seven and Higher Membered N-Heterocycles. Synth. Commun 2014, 44, 2577–2614. doi: 10.1080/00397911.2013.783922. (d) Kaur, N.; Kishore, D. Microwave-Assisted Synthesis of Six-Membered S-Heterocycles. Synth. Commun 2014, 44, 2615–2644. doi: 10.1080/00397911.2013.792354. (e) Kaur, N.; Kishore, D. Microwave-Assisted Synthesis of Seven and Higher Membered O-Heterocycles. Synth. Commun 2014, 44, 2739–2755. doi: 10.1080/00397911.2013.796382.
  • (a) Alberico, D.; Scott, M. E.; Lautens, M. Aryl Bond Formation by Transition-Metal-Catalyzed Direct Arylation. Chem. Rev 2007, 107, 174–238. doi: 10.1021/cr0509760. (b) Kaur, N. Gold Catalysts in the Synthesis of Five-Membered N-Heterocycles. Curr. Organocatal 2017, 4, 122–154. doi: 10.2174/221333720466171103142349.
  • Dick, A. R.; Sanford, M. S. Transition Metal Catalyzed Oxidative Functionalization of Carbon-Hydrogen Bonds. Tetrahedron 2006, 62, 2439–2463. doi: 10.1016/j.tet.2005.11.027.
  • (a) Kaur, N. Palladium Catalysts: synthesis of Five-Membered N-Heterocycles Fused with Other Heterocycles. Catal. Rev 2015, 57, 1–78. doi: 10.1080/01614940.2014.976118. (b) Kaur, N.; Kishore, D. Microwave-Assisted Synthesis of Six Membered O,O-Heterocycles. Synth. Commun 2014, 44, 3082–3111. doi: 10.1080/00397911.2013.796384. (c) Kaur, N.; Kishore, D. Microwave-Assisted Synthesis of Six Membered O-Heterocycles. Synth. Commun 2015, 57, 1–3081. doi: 10.1080/00397911.2013.796383.
  • Zeni, G.; Larock, R. C. Synthesis of Heterocycles via Palladium-Catalyzed Oxidative Addition. Chem. Rev. 2006, 106, 4644–4680. doi: 10.1021/cr0683966.
  • Jimenez-Gonzalez, L.; Garcia-Munoz, S.; Alvarez-Corral, M.; Munoz-Dorado, M.; Rodriguez-Garcia, I. Silver-Catalyzed Asymmetric Synthesis of 2,3-Dihydrobenzofurans: A New Chiral Synthesis of Pterocarpans. Chem. Eur. J 2006, 12, 8762–8779. doi: 10.1002/chem.200600332.
  • Li, Z.; He, C. Recent Advances in Silver-Catalyzed Nitrene, Carbene, and Silylene-Transfer Reactions. Eur. J. Org. Chem 2006, 19, 4313–4322. doi: 10.1002/ejoc.200500602.
  • Dandia, A.; Sati, M.; Loupy, A. Dry-Media One-Pot Syntheses of Fluorinated-2,3-Dihydro-1,5-Benzothiazepines under Microwave Activation. Green Chem. 2002, 4, 599–602. doi: 10.1039/b207004a.
  • Daştan, A.; Kulkarni, A.; Török, B. Environmentally Benign Synthesis of Heterocyclic Compounds by Combined Microwave-Assisted Heterogeneous Catalytic Approaches. Green Chem 2012, 14, 17–37. doi: 10.1039/c1gc15837f.
  • Gupta, M.; Paul, S.; Gupta, R. Microwave Assisted One-Pot Synthesis of Antifungal Active 1-Substituted 3,7-Dialkyl/Aryl-4H-Pyrazolo[4,5-f]-[1,2,4]Triazolo[3,4-b] Thiadiazepines Using Solid Support. Ind. J. Chem 2009, 48B, 460–466.
  • (a) Zhang, P.; Wang, L. Z.; Wu, H. S.; Lan, J. M.; Li, Y.; Wang, Y. X. The Synthesis and Biological Evaluation of a Series of Novel 2-COOC2H5/COONa Substituted 1,5-Benzothiazepine Derivatives as Antimicrobial Agents. Chin. Chem. Lett 2009, 20, 660–662. doi: 10.1016/j.cclet.2009.01.003. (b) El-Bayouki, K. A. M. Benzo[1,5]Thiazepine: synthesis, Reactions, Spectroscopy, and Applications. Org. Chem. Int 2013, 2013, 1–71. doi: 10.1155/2013/210474.
  • Dandia, A.; Singh, R.; Sharma, R.; Singh, D. Investigation of the Reaction of Chloroacetyl Chloride with 1,5-Benzothiazepines: selective Synthesis of Azeto[2,1-d][1,5]Benzothiazepines by Green Chemical Methods and Their Biological Activity. Phosphorus Sulfur Silicon Relat. Elem 2008, 183, 3116–3126. doi: 10.1080/10426500802062236.
  • Kidwai, M.; Sapra, P.; Misra, P.; Saxena, R. K.; Singh, M. Microwave Assisted Solid Support Synthesis of Novel 1,2,4-Triazolo [3, 4-b]-1,3,4-Thiadiazepines as Potent Antimicrobial Agents. Bioorg. Med. Chem 2001, 9, 217–220. doi: 10.1016/s0968-0896(00)00245-5.
  • Hekmatshoar, R.; Sadjadi, S.; Shiri, S.; Heravi, M. M.; Beheshtiha, Y. S. Green Protocol for Synthesis of 1,5-Benzodiazepines and 1,5-Benzothiazepines in the Presence of Nanocrystalline Aluminum Oxide. Synth. Commun 2009, 39, 2549–2559. doi: 10.1080/00397910802657925.
  • Nagaraja, G. K.; Vaidya, V. P.; Rai, K. S.; Mahadevan, K. M. An Efficient Synthesis of 1,5-Thiadiazepines and 1,5-Benzodiazepines by Microwave-Assisted Heterocyclization. Phosphorus Sulfur Silicon Relat. Elem 2006, 181, 2797–2806. doi: 10.1080/10426500600864775.
  • Liu, F.; Martin-Mingot, A.; Jouannetaud, M.-P.; Zunino, F.; Thibaudeau, S. Superelectrophilic Activation in Superacid HF/SbF5 and Synthesis of Benzofused Sultams. Org. Lett. 2010, 12, 868–871. doi: 10.1021/ol9029287.
  • Biswas, D.; Samp, L.; Ganguly, A. K. Synthesis of Conformationally Restricted Sulfonamides via Radical Cyclization. Tetrahedron Lett 2010, 51, 2681–2684. doi: 10.1016/j.tetlet.2010.03.089.
  • George, C. M.; Joseph, M. S.; Richard, F. L.; Timothy, F. H. Novel Solid-Phase Synthesis of 1,5-Benzothiazepine-4-One Derivatives. Tetrahedron Lett 2000, 41, 3029–3033. doi: 10.1016/s0040-4039(00)00341-5.
  • Naik, T. R. R.; Naik, H. S. B.; Raghavendra, M.; Bindu, P. J.; Mahadevan, K. M. Synthesis of Novel 1,5-Benzothiazepine[7,6-b]-1,8-Naphthyridines under Microwave Irradiation via Mannich Condensation. J. Sulfur Chem 2007, 28, 589–595. doi: 10.1080/17415990701625050.
  • Ullah, F.; Samarakoon, T.; Rolfe, A.; Kurtz, R. D.; Hanson, P. R.; Organ, M. G. Scaling out by Microwave-Assisted, Continuous Flow Organic Synthesis (MACOS): Multi-Gram Synthesis of Bromo- and Fluoro-Benzofused Sultams Benzthiaoxazepine-1,1-Dioxides. Chem. Eur. J. 2010, 16, 10959–10962. doi: 10.1002/chem.201001651.
  • Cleator, E.; Baxter, C. A.; O’Hagan, M.; O’Riordan, T. J. C.; Sheen, F. J.; Stewart, G. W. Synthesis of Novel Benzoxathiazepine-1,1-Dioxides by Means of a One-Pot Multicomponent Reaction. Tetrahedron Lett 2010, 51, 1079–1082. doi: http://doi.org/10.1016/j.tetlet.2009.12.099.
  • Pizzirani, D.; Kaya, T.; Clemons, P. A.; Schreiber, S. L. Stereochemical and Skeletal Diversity Arising from Amino Propargylic Alcohols. Org. Lett. 2010, 12, 2822–2825. doi: 10.1021/ol100914b.
  • Plouffe, D.; Brinker, A.; McNamara, C.; Henson, K.; Kato, N.; Kuhen, K.; Nagle, A.; Adrian, F.; Matzen, J. T.; Anderson, P.; et al. In Silico Activity Profiling Reveals the Mechanism of Action of Antimalarials Discovered in a High-Throughput Screen. Pnas. 2008, 105, 9059–9064. doi: 10.1073/pnas.0802982105.
  • Saruta, K.; Ogiku, T.; Fukase, K. Traceless Solid-Phase Synthesis of Multiple Sulfonamide-Containing Cyclic Sulfides Exploiting Microwave Irradiation. Tetrahedron Lett 2009, 50, 4364–4367. doi: 10.1016/j.tetlet.2009.05.028.
  • Rolfe, A.; Samarakoon, T. B.; Klimberg, S. V.; Brzozowski, M.; Neuenswander, B.; Lushington, G. H.; Hanson, P. R. S (N)Ar-Based, Facile Synthesis of a Library of Benzothiaoxazepine-1,1'-Dioxides. J. Comb. Chem. 2010, 12, 850–854. doi: 10.1021/cc1001023.
  • Rolfe, A.; Samarakoon, T. B.; Hanson, P. R. Formal [4 + 3] Epoxide Cascade Reaction via a Complementary Ambiphilic Pairing Strategy. Org. Lett. 2010, 12, 1216–1219. doi: 10.1021/ol100035e.
  • Fukuyama, T.; Jow, C.-K.; Cheung, M. 2-Nitrobenzenesulfonamides and 4-Nitrobenzenesulfonamides-Exceptionally Versatile Means for Preparation of Secondary-Amines and Protection of Amines. Tetrahedron Lett 1995, 36, 6373–6374. doi: 10.1016/0040-4039(95)01316-a.
  • Bittner, S.; Assaf, Y.; Krief, P.; Pomerantz, M.; Ziemnicka, B. T.; Smith, C. G. Synthesis of N-Acyl-, N-Sulfonyl-, and N-Phosphinylphospha(PV)Azenes by a Redox-Condensation Reaction Using Amides, Triphenylphosphine, and Diethyl Azodicarboxylate. J. Org. Chem. 1985, 50, 1712–1718. doi: 10.1021/jo00210a027.
  • Ghotekar, D. S.; Joshi, R. S.; Mandhande, P. G.; Bhagat, S. S.; Gill, C. H. Synthesis of Some Biologically Important Fluorinated 3-Chlorochromones and 1,5-Thiazepines as Antimicrobial and Antifungal Agents. Indian J. Chem 2010, 49B, 1267–1270.
  • Vedejs, E.; Hagen, J. P. Macrocycle Synthesis by Repeatable 2,3-Sigmatropic Shifts. Ring-Growing Reactions. J. Am. Chem. Soc. 1975, 97, 6878–6880. doi: 10.1021/ja00856a055.
  • Jin, H. W.; Zhou, B. W.; Wu, Z.; Shen, Y.; Wang, Y. G. One-Pot Synthesis of Substituted Indolines via a Copper-Catalyzed Sequential Multicomponent/C-N Coupling Reaction. Tetrahedron 2011, 67, 1178–1182. doi: 10.1016/j.tet.2010.11.094.
  • Barange, D. K.; Tu, Y. C.; Kavala, V.; Kuo, C.-W.; Yao, C. F. One-Pot Synthesis of Triazolothiadiazepine 1,1-Dioxide Derivatives via Copper-Catalyzed Tandem [3 + 2] Cycloaddition/N-Arylation. Adv. Synth. Catal. 2011, 353, 41–48. doi: 10.1002/adsc.201000465.
  • Liu, Y.; Wan, J. P. Tandem Reactions Initiated by Copper-Catalyzed Cross-Coupling: A New Strategy towards Heterocycle Synthesis. Org. Biomol. Chem. 2011, 9, 6873–6894. doi: 10.1039/c1ob05769c.
  • Kiefer, L.; Gorojankina, T.; Dauban, P.; Faure, H.; Ruat, M.; Dodd, R. H. Design and Synthesis of Cyclic Sulfonamides and Sulfamates as New Calcium Sensing Receptor Agonists. Bioorg. Med. Chem. Lett 2010, 20, 7483–7487. doi: 10.1016/j.bmcl.2010.10.006.
  • Nardi, M.; Cozza, A.; Maiuolo, L.; Oliverio, M.; Procopio, A. 1,5-Benzoheteroazepines through Eco-Friendly General Condensation Reactions. Tetrahedron Lett 2011, 52, 4827–4834. doi: 10.1016/j.tetlet.2011.06.029.
  • Pan, X. Q.; Zou, J.-P.; Huang, Z. H.; Zhang, W. Ga(OTf)3-Promoted Condensation Reactions for 1,5-Benzodiazepines and 1,5-Benzothiazepines. Tetrahedron Lett 2008, 49, 5302–5308. doi: 10.1016/j.tetlet.2008.06.082.
  • Krause, N.; Belting, V.; Deutsch, C.; Erdsack, J.; Fan, H. T.; Gockel, B.; Hoffmann-Roder, A.; Morita, N.; Volz, F. Golden Opportunities in Catalysis. Pure Appl. Chem 2008, 80, 1063–1069. doi: 10.1351/pac200880051063.
  • Weibel, J. M.; Blanc, A.; Pale, P. Ag-Mediated Reactions: coupling and Heterocyclization Reactions. Chem. Rev. 2008, 108, 3149–3173. doi: 10.1021/cr078365q.
  • Alvarez-Corral, M.; Munoz-Dorado, M.; Rodriguez-Garcia, I. Silver-Mediated Synthesis of Heterocycles. Chem. Rev 2008, 108, 3174–3198. doi: 10.1021/cr078361l.
  • Shen, H. C. Recent Advances in Syntheses of Heterocycles and Carbocycles via Homogeneous Gold Catalysis. Part 1: Heteroatom Addition and Hydroarylation Reactions of Alkynes, Allenes, and Alkenes. Tetrahedron 2008, 64, 3885–3903. doi: 10.1016/j.tet.2008.01.081.
  • Hyland, C. T.; Hegedus, L. S. Gold-Catalyzed and N-Iodosuccinimide-Mediated Cyclization of γ-Substituted Allenamides. J. Org. Chem. 2006, 71, 8658–8660. doi: 10.1021/jo061340r.
  • Brasholz, M.; Reissig, H. U. Refined Protocols for the Preparation of 3-Alkoxy-2,5-Dihydrofurans, Allylic Oxidation to β-Alkoxybutenolides and Short Synthesis of (±)-Annularin H. Synlett 2007, 2007, 1294–1298. doi: 10.1055/s-2007-977456.
  • Kim, S.; Lee, P. H. Cyclization of Allenyne‐1,6‐Diols Catalyzed by Gold and Silver Salts: An Efficient Selective Synthesis of Dihydrofuran and Furan Derivatives. Adv. Synth. Catal. 2008, 350, 547–551. doi: 10.1002/adsc.200700471.
  • Park, J.; Kim, S. H.; Lee, P. H. Selective Indium-Mediated 1,2,4-Pentatrien-3-Ylation of Carbonyl Compounds for the Efficient Synthesis of Vinyl Allenols. Org. Lett. 2008, 10, 5067–5070. doi: 10.1021/ol802073q.
  • (a) Alcaide, B.; Almendros, P.; Martinez del Campo, T. Chemodivergence in Alkene/Allene Cycloetherification of Enallenols: iron versus Noble Metal Catalysis. Chem. Eur. J 2008, 14, 7756–7759. doi: 10.1002/chem.200801166. (b) Alcaide, B.; Almendros, P. Novel Aspects on the Preparation of Spirocyclic and Fused Unsual β-Lactams. Topics in Heterocycl. Chem 2010, 22, 1–48. doi: 10.1007/7081_2009_7.
  • Gao, Z.; Li, Y.; Cooksey, J. P.; Snaddon, T. N.; Schunk, S.; Viseux, E. M. E.; McAteer, S. M.; Kocienski, P. J. A Synthesis of an Ionomycin Calcium Complex. Angew. Chem 2009, 121, 5122–5125. doi: 10.1002/ange.200901608.
  • Gao, Z.; Li, Y.; Cooksey, J. P.; Snaddon, T. N.; Schunk, S.; Viseux, E. M. E.; McAteer, S. M.; Kocienski, P. J. A Synthesis of an Ionomycin Calcium Complex. Angew. Chem. Int. Ed. 2009, 48, 5022–5025. doi: 10.1002/anie.200901608.
  • Bongers, N.; Krause, N. Goldene Aussichten in Der Stereoselektiven Katalyse. Angew. Chem. 2008, 120, 2208–2211. doi: 10.1002/ange.200704729.
  • Bongers, N.; Krause, N. Golden Opportunities in Stereoselective Catalysis. Angew. Chem. Int. Ed. 2008, 47, 2178–2181. doi: 10.1002/anie.200704729.
  • Gandon, V.; Lemiere, G.; Hours, A.; Fensterbank, L.; Malacria, M. The Role of Bent Acyclic Allene Gold Complexes in Axis‐to‐Center Chirality Transfers. Angew. Chem. 2008, 120, 7644–7648. doi: 10.1002/ange.200802332.
  • Gandon, V.; Lemiere, G.; Hours, A.; Fensterbank, L.; Malacria, M. The Role of Bent Acyclic Allene Gold Complexes in Axis-to-Center Chirality Transfers. Angew. Chem. Int. Ed. 2008, 47, 7534–7538. doi: 10.1002/anie.200802332.
  • Krause, N.; Aksin-Artok, O.; Breker, V.; Deutsch, C.; Gockel, B.; Poonoth, M.; Sawama, Y.; Sawama, Y.; Sun, T.; Winter, C. Combined Coinage Metal Catalysis for the Synthesis of Bioactive Molecules. Pure Appl. Chem 2010, 82, 1529–1536. doi: 10.1351/pac-con-09-09-23.
  • Li, G.; Zhang, L. Gold-Catalyzed Intramolecular Redox Reaction of Sulfinyl Alkynes: efficient Generation of Alpha-Oxo Gold Carbenoids and Application in Insertion into R-CO Bonds. Angew. Chem. Int. Ed. 2007, 46, 5156–5159. doi: 10.1002/anie.200701449.
  • Li, Z.; Brouwer, C.; He, C. Gold-Catalyzed Organic Transformations. Chem. Rev. 2008, 108, 3239–3265. doi: 10.1021/cr068434l.
  • Shapiro, N. D.; Toste, F. D. Rearrangement of Alkynyl Sulfoxides Catalyzed by Gold(I) Complexes. J. Am. Chem. Soc. 2007, 129, 4160–4161. doi: 10.1021/ja070789e.
  • Arcadi, A. Alternative Synthetic Methods through New Developments in Catalysis by Gold. Chem. Rev. 2008, 108, 3266–3325. doi: 10.1021/cr068435d.
  • Zhao, X.; Zhong, Z. Z.; Peng, L. L.; Zhang, W. X.; Wang, J. B. Au(PPh3)Cl-AgSbF6-Catalyzed Rearrangement of Propargylic 1,3-Dithianes: formation of 8-Membered 1,3-Bisthio-Substituted Cyclic Allenes. Chem. Commun. 2009, 18, 2535–2537. doi: 10.1039/b903028j.
  • Sawyer, J. S.; Schmittling, E. A.; Palkowitz, J. A.; Smith, W. J. Synthesis of Diaryl Ethers, Diaryl Thioethers, and Diarylamines Mediated by Potassium Fluoride-Alumina and 18-Crown-6: expansion of Scope and Utility. J. Org. Chem. 1998, 63, 6338–6343. doi: 10.1021/jo980800g.
  • Sanz, R.; Fernandez, Y.; Perez, M. P.; Castroviejo, A.; Fananas, F. J. A Route to Regioselectively Functionalized Carbazoles, Dibenzofurans, and Dibenzothiophenes through Anionic Cyclization of Benzyne-Tethered Aryllithiums. J. Org. Chem. 2006, 71, 6291–6294. doi: 10.1021/jo060911c.
  • Fujii, T.; Hao, W.; Yoshimura, T. New Method for the Preparation of Dibenzo[b, f][1,4]Thiazepines. Heteroatom Chem. 2004, 15, 246–250. doi: 10.1002/hc.20010.
  • Kaur, N. Solid-Phase Synthesis of Sulfur Containing Heterocycles. J. Sulfur Chem 2018, 39, 544–577. doi: 10.1080/17415993.2018.1457673.
  • Guo, R. N.; Gao, K.; Ye, Z. S.; Shi, L.; Li, Y.; Zhou, Y. G. Iridium-Catalyzed Asymmetric Hydrogenation of Dibenzo[b,f][1,4]Thiazepines. Pure Appl. Chem 2013, 85, 843–849. doi: 10.1351/pac-con-12-07-02.
  • Dandia, A.; Sati, M.; Arya, K.; Sarawgi, P.; Loupy, A. Green Chemical Approach for Facile One-Pot Synthesis of 2,4,8-Trisubstituted-1,5-Benzothiazepines and Their Dioxides under Microwave Irradiation. J. Sulfur Chem 2004, 25, 283–289. doi: 10.1080/17415990412331282468.
  • Arya, K.; Dandia, A. The Expedient Synthesis of 1,5-Benzothiazepines as a Family of Cytotoxic Drugs. Bioorg. Med. Chem. Lett 2008, 18, 114–119. doi: 10.1016/j.bmcl.2007.11.002.
  • Almena, J.; Foubelo, F.; Yus, M. Reductive Opening of Thiophthalan: A New Route to Functionalized Sulfur-Containing Compounds. J. Org. Chem. 1996, 61, 1859–1862. doi: 10.1021/jo951773m.
  • Yus, M. Ring Opening of Heterocycles by an Arene Catalyzed Lithiation. Pure Appl. Chem 2003, 75, 1453–1475. doi: 10.1351/pac200375101453.
  • Yus, M.; Foubelo, F.; Ferrandez, J. V. DTBB-Catalyzed Lithiation of 4-Hetero-Substituted Dibenzothiins. Chem. Lett. 2002, 31, 726–727. doi: 10.1246/cl.2002.726.
  • Yus, M.; Foubelo, F.; Ferrandez, J. V. Dibenzothiepins, Phthalans and Phthalides from 4-Heterosubstituted Dibenzothiins. Tetrahedron 2003, 59, 2083–2092. doi: 10.1016/s0040-4020(03)00210-2.
  • Zeng, F.; Alper, H. Palladium-Catalyzed Domino Ring-Opening/Carboxamidation Reactions of N-Tosylaziridines and 2-Iodothiophenols: A Facile and Efficient Approach to 1,4-Benzothiazepin-5-Ones. Org. Lett. 2010, 12, 5567–5569. doi: 10.1021/ol102394h.
  • Ban, S.; Du, D. M.; Liu, H.; Yang, W. Synthesis of Binaphthyl Sulfonimides and Their Application in the Enantioselective Michael Addition of Ketones to Nitroalkenes. Eur. J. Org. Chem. 2010, 2010, 5160–5164. doi: 10.1002/ejoc.201000818.
  • He, H.; Chen, L. Y.; Wong, W. Y.; Chan, W. H.; Lee, A. W. M. Practical Synthetic Approach to Chiral Sulfonimides (CSIs) – Chiral Brønsted Acids for Organocatalysis. Eur. J. Org. Chem. 2010, 2010, 4181–4184. doi: 10.1002/ejoc.201000477.
  • Chouhan, G.; Alper, H. Domino Ring-Opening/Carboxamidation Reactions of N-Tosylaziridines and 2-Halophenols/Pyridinol: efficient Synthesis of 1,4-Benzo- and Pyrido-Oxazepinones. Org. Lett. 2010, 12, 192–195. doi: 10.1021/ol902598d.
  • Crich, D.; Rahaman, M. Y. Dihydro-3-(Triphenylphosphoranylidene)-2,5-Thiophendione: A Convenient Synthon for the Preparation of Substituted 1,4-Thiazepin-5-Ones and Piperidinones via the Intermediacy of Thioacids. Tetrahedron 2010, 66, 6383–6390. doi: 10.1016/j.tet.2010.04.002.
  • Baichurin, R. I.; Aboskalova, N. I.; Berestovitskaya, V. M. One-Pot Synthesis of 2-Aryl-4-Methyl-3-Nitro-2,3-Dihydro-1,5-Benzothiazepines. Russ. J. Org. Chem. 2010, 46, 1590–1591. doi: 10.1134/s1070428010100295.
  • Backbro, K.; Lowgren, S.; Osterlund, K.; Atepo, J.; Unge, T.; Hulten, J.; Bonham, N. M.; Schaal, W.; Karlen, A.; Hallberg, A. Unexpected Binding Mode of a Cyclic Sulfamide HIV-1 Protease Inhibitor. J. Med. Chem. 1997, 40, 898–902. doi: 10.1021/jm960588d.
  • Lam, P.; Jadhav, P.; Eyermann, C.; Hodge, C.; Ru, Y.; Bacheler, L.; Meek, J.; Otto, M.; Rayner, M.; Wong, Y.; Et, a. Rational Design of Potent, Bioavailable, Nonpeptide Cyclic Ureas as HIV Protease Inhibitors. Science 1994, 263, 380–384. doi: 10.1126/science.8278812.
  • (a) Cramer, R. D.; Patterson, D. E.; Bunce, J. D. Comparative Molecular Field Analysis (CoMFA). Effect of Shape on Binding of Steroids to Carrier Proteins. J. Am. Chem. Soc 1988, 110, 5959–5967. doi: 10.1021/ja00226a005. (b) Wannberg, J.; Ersmark, K.; Larhed, M. Microwave-Accelerated Synthesis of Protease Inhibitors. Top. Curr. Chem 2006, 266, 167–198. doi: 10.1007/128_067.
  • Rayabarapu, D. K.; Zhou, A.; Jeon, K. O.; Samarakoon, T.; Rolfe, A.; Siddiqui, H.; Hanson, P. R. α-Haloarylsulfonamides: multiple Cyclization Pathways to Skeletally Diverse Benzofused Sultams. Tetrahedron 2009, 65, 3180–3188. doi: 10.1016/j.tet.2008.11.053.
  • Willy, B.; Muller, T. J. J. Three-Component Synthesis of Benzo[1,5]Thiazepines via Coupling-Addition-Cyclocondensation Sequence. Mol. Divers. 2010, 14, 443–453. doi: 10.1007/s11030-009-9223-z.
  • Vasudevan, A.; Tseng, P. S.; Djuric, S. W. A Post Aza Baylis-Hillman/Heck Coupling Approach towards the Synthesis of Constrained Scaffolds. Tetrahedron Lett 2006, 47, 8591–8593. doi: 10.1016/j.tetlet.2006.09.115.
  • (a) Sharma, A.; Appukkuttana, P.; Eycken, E. V. Microwave-Assisted Synthesis of Medium-Sized Heterocycles. Chem. Commun 2012, 48, 1623–1637. doi: 10.1039/c1cc15238f. (b) Singh, V.; Batra, S. Advances in the Baylis-Hillman Reaction-Assisted Synthesis of Cyclic Frameworks. Tetrahedron 2008, 64, 4511–4574. doi: 10.1016/j.tet.2008.02.087.
  • Nag, S.; Batra, S. Applications of Allylamines for the Syntheses of Aza-Heterocycles. Tetrahedron 2011, 67, 8959–9061. doi: 10.1016/j.tet.2011.07.087.
  • Ax, A.; Schaal, W.; Vrang, L.; Samuelsson, B.; Hallberg, A.; Karlen, A. Cyclic Sulfamide HIV-1 Protease Inhibitors, with Sidechains Spanning from P2/P2' to P1/P1. Bioorg. Med. Chem 2005, 13, 755–764. doi: 10.1016/j.bmc.2004.10.042.
  • Karthikeyan, S. V.; Perumal, S. A Facile Tandem Protocol for the Regioselective Synthesis of Novel Thienobenzothiazepines. Tetrahedron Lett 2007, 48, 2261–2265. doi: 10.1016/j.tetlet.2007.01.168.
  • Feast, G. C.; Page, L. W.; Robertson, J. The Intramolecular Amination of Allenes. Chem. Commun. 2010, 46, 2835–2837. doi: 10.1039/b926179f.
  • Stoll, A. H.; Blakey, S. B. Rhodium Catalyzed Allene Amination: diastereoselective Synthesis of Aminocyclopropanes via a 2-Amidoallylcation Intermediate. J. Am. Chem. Soc. 2010, 132, 2108–2109. doi: 10.1021/ja908538t.
  • Khan, H. A.; Kou, K. G. M.; Dong, V. M. Nitrogen-Directed Ketone Hydroacylation: enantioselective Synthesis of Benzoxazecinones. Chem. Sci 2011, 2, 407–410. doi: 10.1039/c0sc00469c.
  • Trost, B. M.; Malhotra, S.; Olson, D. E.; Maruniak, A.; Du, B. J. Asymmetric Synthesis of Diamine Derivatives via Sequential Palladium and Rhodium Catalysis. J. Am. Chem. Soc. 2009, 131, 4190–4191. doi: 10.1021/ja809697p.
  • Bosnich, B.; Fairlie, D. P. Homogeneous Catalysis. Mechanism of Catalytic Hydroacylation: The Conversion of 4-Pentenals to Cyclopentanones. Organometallics 1988, 7, 946–954. doi: 10.1021/om00094a026.
  • Nicolaou, K. C.; Gross, J. L.; Kerr, M. A. Synthesis of Novel Heterocycles Related to the Dynemicin a Ring Skeleton. J. Heterocycl. Chem 1996, 33, 735–746. doi: 10.1002/jhet.5570330336.
  • Wender, P. A.; Takahashi, H.; Witulski, B. Transition Metal Catalyzed [5 + 2] Cycloadditions of Vinylcyclopropanes and Alkynes: A Homolog of the Diels-Alder Reaction for the Synthesis of Seven-Membered Rings. J. Am. Chem. Soc. 1995, 117, 4720–4721. doi: 10.1021/ja00121a036.
  • Trost, B. M.; Toste, F. D.; Shen, H. C. Ruthenium-Catalyzed Intramolecular [5 + 2] Cycloadditions. J. Am. Chem. Soc. 2000, 122, 2379–2380. doi: 10.1021/ja993400z.
  • Shair, M. D.; Aloise, A. D.; Layton, M. E. Synthesis of Cyclooctenones Using Intramolecular Hydroacylation. J. Am. Chem. Soc. 2000, 122, 12610–12611. doi: 10.1021/ja0055920.
  • Traynelis, V. J.; Sih, J. C.; Borgnaes, D. M. Seven-Membered Heterocycles. VI. 4-Alkylidene-1-Benzothiepin-5(2H)-Ones and the Reaction of Halogenated 3,4-Dihydro-1-Benzothiepin-5(2H)-Ones with Base. J. Org. Chem. 1973, 38, 2629–2637. doi: 10.1021/jo00955a012.
  • Itoh, T.; Mase, T. A General Palladium-Catalyzed Coupling of Aryl Bromides/Triflates and Thiols. Org. Lett. 2004, 6, 4587–4590. doi: 10.1021/ol047996t.
  • Bendorf, H. D.; Colella, C. M.; Dixon, E. C.; Marchetti, H.; Matukonis, A. N.; Musselman, J. D.; Tiley, T. A. Chelation-Assisted Intramolecular Hydroacylation: synthesis of Medium Ring Sulfur Heterocycles. Tetrahedron. Lett 2002, 43, 7031–7034. doi: 10.1016/s0040-4039(02)01552-6.
  • Barrett, A. G. M.; Ahmed, M.; Baker, S. P.; Baugh, S. P. D.; Braddock, D. C.; Procopiou, P. A.; White, A. J. P.; Williams, D. J. Tandem Ireland-Claisen Rearrangement Ring-Closing Alkene Metathesis in the Construction of Bicyclic β-Lactam Carboxylic Esters. J. Org. Chem. 2000, 65, 3716–3721. doi: 10.1021/jo991932s.
  • Rosillo, M.; Casarrubios, L.; Domı́nguez, G.;.; Pérez-Castells, J. Synthesis of Aromatic Natural Product Frameworks Using Enyne Metathesis. Tetrahedron Lett 2001, 42, 7029–7031. doi: 10.1016/s0040-4039(01)01313-2.
  • Diver, S. T.; Giessert, A. J. Enyne Metathesis (enyne Bond Reorganization). Chem. Rev. 2004, 104, 1317–1382. doi: 10.1021/cr020009e.
  • Dondas, H. A.; Clique, B.; Cetinkaya, B.; Grigg, R.; Kilner, C.; Morris, J.; Sridharan, V. Δ3-Aryl/Heteroaryl Substituted Heterocycles via Sequential Pd-Catalyzed Intermolecular Cascade/Ring Closing Metathesis (RCM). Tetrahedron 2005, 61, 10652–10666. doi: 10.1016/j.tet.2005.08.078.
  • Salim, S. S.; Bellingham, R. K.; Brown, R. C. D. One-Pot Ring-Closing Metathesis-Alkene Cross Metathesis Reactions of Sulfamide-Linked Enynes. Eur. J. Org. Chem. 2004, 2004, 800–806. doi: 10.1002/ejoc.200300725.
  • Stefinovic, M.; Snieckus, V. Connecting Directed Ortho-Metalation and Olefin Metathesis Strategies. Benzene-Fused Multi Ring-Sized Oxygen Heterocycles. First Syntheses of Radulanin a and Helianane. J. Org. Chem. 1998, 63, 2808–2809. doi: 10.1021/jo980299s.
  • Chauder, B.; Green, L.; Snieckus, V. The Directed Ortho-Metalation ± Transition Metal ± Catalyzed Reaction Symbiosis in Heteroaromatic Synthesis. Pure Appl. Chem 1999, 71, 1521–1529. doi: 10.1351/pac199971081521.
  • Neustadt, B. R. Facile Preparation of N-(Sulfonyl)Carbamates. Tetrahedron Lett 1994, 35, 379–380. doi: 10.1016/0040-4039(94)85058-5.
  • Culbertson, B. M.; Dietz, S. Some Aromatic Vinyl Sulphonyl Chlorides. J. Chem. Soc, C 1968, 992–993. doi: 10.1039/j39680000992.
  • Jimenez-Hopkins, M.; Hanson, P. R. An RCM Strategy to Stereodiverse δ-Sultam Scaffolds. Org. Lett. 2008, 10, 2223–2226. doi: 10.1021/ol800649n.
  • Barrett, A. G. M.; Baugh, S. P. D.; Braddock, D. C.; Flack, K.; Gibson, V. C.; Giles, M. R.; Marshall, E. L.; Procopiou, P. A.; White, A. J. P.; Williams, D. J. Rapid Entry into Mono-, bi-, and Tricyclic Beta-Lactam Arrays via Alkene Metathesis. J. Org. Chem. 1998, 63, 7893–7907. doi: 10.1021/jo981150j.
  • Barrett, A. G. M.; Baugh, S. P. D.; Braddock, D. C.; Flack, K.; Gibson, V. C.; Procopiou, P. A. Enyne Metathesis for the Facile Synthesis of Highly Functionalized Novel Bicyclic Beta-Lactams. Chem. Commun. 1997, 15, 1375–1376. doi: 10.1039/a702952g.
  • Barrett, A. G. M.; Baugh, S. P. D.; Gibson, V. C.; Giles, M. R.; Marshall, E. L.; Procopiou, P. A. Highly Functionalised Monocyclic and Bicyclic β-Lactams via Alkene Metathesis. Chem. Commun. 1997, 2, 155–156. doi: 10.1039/a607308e.
  • Zhong, W.; Chen, X.; Zhang, Y. Conversion of Bis(o-Nitrophenyl)Disulfides to Heterocycles Containing Sulfur and Nitrogen by the Action of Samarium Diiodide. Heteroatom Chem. 2001, 12, 156–160. doi: 10.1002/hc.1025.
  • Girard, P.; Namy, J. L.; Kagan, H. B. Divalent Lanthanide Derivatives in Organic Synthesis. Mild Preparation of Samarium Iodide and Ytterbium Iodide and Their Use as Reducing or Coupling Agents. J. Am. Chem. Soc. 1980, 102, 2693–2698. doi: 10.1021/ja00528a029.
  • Krief, A.; Laval, A. M. Coupling of Organic Halides with Carbonyl Compounds Promoted by SmI2, the Kagan Reagent. Chem. Rev. 1999, 99, 745–778. doi: 10.1021/cr980326e.
  • Molander, G. A.; Harris, C. R. Sequenced Reactions with Samarium(II) Iodide. Tetrahedron 1998, 54, 3321–3354. doi: 10.1016/s0040-4020(97)10384-2.
  • Molander, G. A.; McKie, J. A. Synthesis of Substituted Cyclooctanols by a Samarium(II) Iodide Promoted 8-Endo Radical Cyclization Process. J. Org. Chem. 1994, 59, 3186–3192. doi: 10.1021/jo00090a041.
  • Nandanan, E.; Dinesh, C. U.; Reissig, H. U. Competition between Novel 8-Endo-Dig and 6-Trig Cyclizations of Samarium Ketyls Leading Either to Benzannulated Cyclooctene or to Hexahydronaphthalene Derivatives. Tetrahedron 2000, 56, 4267–4277. doi: 10.1016/s0040-4020(00)00353-7.
  • Mukaiyama, T.; Shiina, I.; Iwadare, H.; Saitoh, M.; Nishimura, T.; Ohkawa, N.; Sakoh, H.; Nishimura, K.; Tani, Y.; Hasegawa, M.; et al. Asymmetric Total Synthesis of Taxol. Chem. Eur. J. 1999, 5, 121–161. doi: 10.1002/(sici)1521-3765(19990104)5:1 < 121::aid-chem121 > 3.0.co;2-o.
  • Ducray, R.; Cramer, N.; Ciufolini, M. A. Homo-Brook Route to Benzazocenols and Congeners via Allylsilane-Derived Aziridines. Tetrahedron Lett 2001, 42, 9175–9178. doi: 10.1016/s0040-4039(01)02018-4.
  • (a) Yet, L. Metal-Mediated Synthesis of Medium-Sized Rings. Chem. Rev 2000, 100, 2963–3008. doi: 10.1021/cr990407q. (b) Holemann, A. Samarium Diiodide. Synlett 2001, 9, 1497–1498. doi: 10.1055/s-2001-16801.
  • Saini, R. K.; Joshi, Y. C.; Joshi, P. Solvent-Free Synthesis of Some 1,5-Benzothiazepines and Benzodiazepines and Their Antibacterial Activity. Phosphorus Sulfur Silicon Relat. Elem 2008, 183, 2181–2190. doi: 10.1080/10426500701852661.
  • Kumar, R. R.; Perumal, S. A Facile Synthesis and Highly Atom Economic 1,3-Dipolar Cycloaddition of Hexahydropyrido[3,4-c][1,5]Benzothiazepines with Nitrile Oxide: stereoselective Formation of Hexahydro-[1,2,4]Oxadiazolo[5,4-d]Pyrido[3,4-c][1,5]Benzothiazepines. Tetrahedron 2007, 63, 7850–7857. doi: 10.1016/j.tet.2007.05.097.
  • Kodomari, M.; Noguchi, T.; Aoyama, T. Solvent-Free Synthesis of 1,5-Benzothiazepines and Benzodiazepines on Inorganic Supports. Synth. Commun 2004, 34, 1783–1790. doi: 10.1081/scc-120034159.
  • Willy, B.; Dallos, T.; Rominger, F.; Schonhaber, J.; Muller, T. J. J. Three-Component Synthesis of Cryo-Fluorescent 2,4-Disubstituted 3H-Benzo[b][1,4]Diazepines - Conformational Control of Emission Properties. Eur. J. Org. Chem. 2008, 2008, 4796–4805. doi: 10.1002/ejoc.200800619.
  • De Voss, J. J.; Sui, Z. H. Synthesis of Medium Size Rings Containing Oxygen and Sulfur by Ring Expansion of Halodioxolanes, Dioxanes and Oxathiolanes. Tetrahedron Lett 1994, 35, 49–52. doi: 10.1016/0040-4039(94)88159-6.
  • Littke, A. F.; Fu, G. C. Palladium-Catalyzed Coupling Reactions of Aryl Chlorides. Angew. Chem. Int. Ed. 2002, 41, 4176–4211. doi: 10.1002/1521-3773(20021115)41:22 < 4176::aid-anie4176 > 3.0.co;2-u.
  • Janosik, T.; Bergman, J.; Stensland, B.; Stalhandske, C. Thionation of Bisindole Derivatives with P4S10 or Elemental Sulfur. J. Chem. Soc, Perkin Trans. 1 2002, 3, 330–334. doi: 10.1039/b109840c.
  • Polshettiwar, V.; Kaushik, M. P. Recent Advances in Thionating Reagents for the Synthesis of Organosulfur Compounds. J. Sulfur Chem 2006, 27, 353–386. doi: 10.1080/17415990600733112.
  • Schwarz, M. K.; Tumelty, D.; Gallop, M. A. Solid-Phase Synthesis of 3,5-Disubstituted 2,3-Dihydro-1,5-Benzothiazepin-4(5H)-Ones. J. Org. Chem. 1999, 64, 2219–2231. doi: 10.1021/jo981567p.
  • Nefzi, A.; Ong, A. N.; Giulianotti, A. M.; Ostresh, M. J.; Houghten, A. R. Solid Phase Synthesis of 1,4-Benzothiazepines-One Derivatives. Tetrahedron Lett 1999, 40, 4939–4942. doi: 10.1016/s0040-4039(99)00964-8.
  • Schrock, R. R.; Clark, D. N.; Sancho, J.; Wengrovius, J. H.; Rocklage, S. M.; Pedersen, S. F. Tungsten(VI) Neopentylidyne Complexes. Organometallics 1982, 1, 1645–1651. doi: 10.1021/om00072a018.
  • Listemann, M. L.; Schrock, R. R. Multiple Metal Carbon Bonds. A General Route to Tri-Tert-Butoxytungsten Alkylidyne Complexes. Scission of Acetylenes by Ditungsten Hexa-Tert-Butoxide. Organometallics 1985, 4, 74–83. doi: 10.1021/om00120a014.
  • Schrock, R. R. The Alkoxide Ligand in Olefin and Acetylene Metathesis Reactions. Polyhedron 1995, 14, 3177–3195. doi: 10.1016/0277-5387(95)85005-8.
  • Schrock, R. R. High-Oxidation-State Molybdenum and Tungsten Alkylidyne Complexes. Acc. Chem. Res. 1986, 19, 342–348. doi: 10.1021/ar00131a003.
  • Vyawahare, D.; Ghodke, M.; Nikalje, A. P. Green Synthesis and Pharmacological Screening of Novel 1,5-Benzothiazepines as CNS Agents. Int. J. Pharmac. Pharm. Sci 2010, 2, 27–29.
  • Nikalje, A. P.; Vyawahare, D. Facile Green Synthesis of 2, 4-Substituted-2, 3-Dihydro-1, 5-Benzothiazepine Derivatives as Novel Anticonvulsant and Central Nervous System (CNS) Depressant Agents. Afr. J. Pure Appl. Chem 2011, 5, 422–428.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.