200
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of new polyhedral oligomeric silsesquioxane derivatives as some possible antimicrobial agents

, ORCID Icon &
Pages 257-268 | Received 01 Aug 2018, Accepted 19 Oct 2018, Published online: 09 Jan 2019

References

  • Scott, D. W. Thermal Rearrangement of Branched-Chain Methylpolysiloxanes. J. Am. Chem. Soc. 1946, 68, 356–358. DOI:10.1021/ja01207a003.
  • Jianjun, D.; Joseph, T. P.; John, R. H.; Catherine, E. F.-C.; Brent, D. V.; Alan, R. E. Polyhedral Oligomeric Silsesquioxanes: A New Class of Amphiphiles at the Air/Water Interface. J. Am. Chem. Soc. 2002, 124, 15194–15195. DOI:10.1021/ja027860v.
  • Cordes, D. B.; Paul D. Lickiss, P. D.; Rataboul, F. Recent Developments in the Chemistry of Cubic Polyhedral Oligosilsesquioxanes. Chem. Rev. 2010, 110, 2081–2173. DOI:10.1021/cr900201r.
  • Wu, J.; Mather, P. T. POSS Polymers: Physical Properties and Biomaterials Applications. Polym. Rev. 2009, 49, 25–63. DOI:10.1080/15583720802656237.
  • Hurd, C. B. Studies on Siloxanes. I. The Specific Volume and Viscosity in Relation to Temperature and Constitution. J. Am. Chem. Soc. 1946, 68, 364–370. DOI:10.1021/ja01207a005.
  • Hui, Z.; Qun, Y.; Jianwei, X. Polyhedral Oligomeric Silsesquioxane-based Hybrid Materials and Their Applications. Mater. Chem. Front. 2017, 1, 212–230. DOI:10.1039/c6qm00062b.
  • Daisuke, I.; Yuh, S.; Kazuki, N.; Tsukasa, N.; Hisashi, F. Self-Organization of Silsesquioxane-Modified Gold Nanoparticles and Immobilization of Their Polythiophene Nanocomposite Films onto Electrode Surface. Phosphorus, Sulfur Silicon Relat. Elem. 2010, 185, 1206–1213. DOI:10.1080/10426501003773597.
  • Zhenghui, L.; Dingcai, W.; Yeru, L.; Ruowen, F.; Krzysztof, M. Synthesis of Well-Defined Microporous Carbons by Molecular-Scale Templating with Polyhedral Oligomeric Silsesquioxane Moieties. J. Am. Chem. Soc. 2014, 136, 4805–4808. DOI:10.1021/ja412192v.
  • Yongjun, G.; Atsuko, E.; Kazuaki, K.; Yuan, C. L. Efficient Preparation of Glycoclusters from Silsesquioxanes. Org. Lett. 2004, 6, 3457–3460. DOI:10.1021/ol040043a.
  • Tanaka, K.; Chujo, Y. Advanced Functional Materials Based on Polyhedral Oligomeric Silsesquioxane (POSS). J. Mater. Chem. 2012, 22, 1733–1746. DOI:10.1039/C1JM14231C.
  • Kuo, S.-W.; Chang, F.-C. POSS Related Polymer Nanocomposites. Prog. Polym. Sci. 2011, 36, 1649–1696. DOI:10.1016/j.progpolymsci.2011.05.002.
  • Liu, Y. R.; Huang, Y. D.; Liu, L. Thermal Stability of POSS/methylsilicone Nanocomposites. Compos. Sci. Technol. 2007, 67, 2864–2876. DOI:10.1016/j.compscitech.2007.01.023.
  • Lewicki, J. P.; Patel, M.; Morrell, P.; Liggat, J.; Murphy, J.; Pethrick, R. The Stability of Polysiloxanes Incorporating Nano-scale Physical Property Modifiers. Sci. Technol. Adv. Mater. 2008, 9, 024403. DOI:10.1088/1468-6996/9/2/024403.
  • Zhang, H. X.; Lee, H. Y.; Shin, Y. J.; Lee, D. H.; Noh, S. K. Effect of 3rd Monomer Addition on Styrene/styryl-polyhedral Oligomeric Silsesquioxane (POSS) Copolymerization. Macromol. Res. 2009, 17, 352–355. DOI:10.1007/BF03218874.
  • Kwon, Y.; Kim, K. H. Synthesis of Norbornene Block Copolymers Containing Polyhedral Oligomeric Silsesquioxane by Sequential Ring-opening Metathesis Polymerization. Macromol. Res. 2006, 14, 424–429. DOI:10.1007/BF03219105.
  • Feng, Y.; Jia, Y.; Guang, S. Y.; Xu, H. Y. Study on Thermal Enhancement Mechanism of POSS‐containing Hybrid Nanocomposites and Relationship between Thermal Properties and Their Molecular Structure. J. Appl. Polym. Sci. 2010, 115, 2212–2220. DOI:10.1002/app.31319.
  • Feng, Y.; Jia, Y.; Xu, H. Y. Preparation and Thermal Properties of Hybrid Nanocomposites of Poly(methyl Methacrylate)/Octavinyl Polyhedral Oligomeric Silsesquioxane Blends. J. Appl. Polym. Sci. 2009, 111, 2684–2690. DOI:10.1002/app.29240.
  • Ma, X.-M.; Wang, B.; Zhang, M.-X.; Min, F.-F.; He, J. Synthesis and Thermal Characterizations of Pmma Nanocomposite Functionalized by Polyhedral Oligomeric Silsesquioxane. Phosphorus, Sulfur Silicon Relat. Elem. 2013, 188, 1819–1826. DOI:10.1080/10426507.2013.788001.
  • Zhang, W.; Muller, A. H. E. Architecture, self-assembly and Properties of Well-defined Hybrid Polymers Based on Polyhedral Oligomeric Silsequioxane (POSS). Prog. Polym. Sci. 2013, 38, 1121–1162. DOI:10.1016/j.progpolymsci.2013.03.002.
  • Zhang, Q.; He, H.; Xi, K.; Huang, X.; Yu, X.; Jia, X. Synthesis of N-Phenylaminomethyl POSS and Its Utilization in Polyurethane. Macromolecules 2011, 44, 550–557. DOI:10.1021/ma101825j.
  • Chen, P.; Huang, X.; Zhang, Q.; Xi, K.; Jia, X. Hybrid Networks Based on Poly (styrene-co-maleic Anhydride) and N-phenylaminomethyl POSS. Polymer 2013, 54, 1091–1097. DOI:10.1016/j.polymer.2012.12.047.
  • Milliman, H. W.; Boris, D.; Schiraldi, D. A. Experimental Determination of Hansen Solubility Parameters for Select POSS and Polymer Compounds as a Guide to POSS–Polymer Interaction Potentials. Macromolecules 2012, 45, 1931–1936. DOI:10.1021/ma202685j.
  • Raftopoulos, K. N.; Koutsoumpis, S.; Jancia, M.; Lewicki, J. P.; Kyriakos, K.; Mason, H. E.; Harley, S. J.; Hebda, E.; Papadakis, C. M.; Pielichowski, K.; Pissis, P. Reduced Phase Separation and Slowing of Dynamics in Polyurethanes with Three-Dimensional POSS-Based Cross-Linking Moieties. Macromolecules 2015, 48, 1429–1441. DOI:10.1021/ma5023132.
  • Jiang, S. D.; Tang, G.; Bai, Z. M.; Wang, Y. Y.; Hu, Y.; Song, L. Surface Functionalization of MoS2 with POSS for Enhancing Thermal, flame-retardant and Mechanical Properties in PVA Composites. RSC Adv. 2014, 4, 3253–3262. DOI:10.1039/C3RA45911J.
  • Chua, M. L.; Shao, L.; Low, B. T.; Xiao, Y.; Chung, T. S.; Chua, M. L.; Shao, L.; Low, B. T.; Xiao, Y.; Chung, T. S. Polyetheramine–polyhedral Oligomeric Silsesquioxane Organic–inorganic Hybrid Membranes for CO2/H2 and CO2/N2 Separation. J. Membr. Sci. 2011, 385, 40–48. DOI:10.1016/j.memsci.2011.09.008.
  • Le, N. L.; Wang, Y.; Chung, T. S. Pebax/POSS Mixed Matrix Membranes for Ethanol Recovery from Aqueous Solutions via Pervaporation. J. Membr. Sci. 2011, 379, 174–183. DOI:10.1016/j.memsci.2011.05.060.
  • Sambhy, V.; MacBride, M. M.; Peterson, B. R.; Sen, A. Silver Bromide Nanoparticle/Polymer Composites: Dual Action Tunable Antimicrobial Materials. J. Am. Chem. Soc. 2006, 128, 9798–9808. DOI:10.1021/ja061442z.
  • Álvarez-Paino, M.; Muñoz-Bonilla, A.; Fernández-García, M. Antimicrobial Polymers in the Nano-World. Nanomaterials 2017, 7, 48. DOI:10.3390/nano7020048.
  • Callow, J. A.; Callow, M. E. Trends in the Development of Environmentally Friendly Fouling-resistant Marine Coatings. Nat. Commun. 2011, 2, 244–253. DOI:10.1038/ncomms1251.
  • Jiao, Y.; Niu, L.; Ma, S.; Li, J.; Tay, F. R.; Chen, J. Quaternary Ammonium-based Biomedical Materials: State-of-the-art, toxicological Aspects and Antimicrobial Resistance. Prog. Polym. Sci. 2017, 71, 53–90. DOI:10.1016/j.progpolymsci.2017.03.001
  • Simoncic, B.; Tomsic, B. Structures of Novel Antimicrobial Agents for Textiles - A Review. Text. Res. J. 2010, 80, 1721–1737. DOI:10.1177/0040517510363193.
  • Ren, W.; Cheng, W.; Wang, G.; Liu, Y. Developments in Antimicrobial Polymers. J. Polym. Sci. Part A: Polym. Chem. 2017, 55, 632–639. DOI:10.1002/pola.28446.
  • Huang, K.-S.; Yang, C.-H.; Huang, S.-L.; Chen, C.-Y.; Lu, Y.-Y.; Lin, Y.-S. Recent Advances in Antimicrobial Polymers: A Mini-Review. IJMS. 2016, 17, 1578. DOI:10.3390/ijms17091578.
  • Chen, A.; Peng, H.; Blakey, I.; Whittaker, A. K. Biocidal Polymers: A Mechanistic Overview. Polym. Rev. 2017, 57, 276–310. DOI:10.1080/15583724.2016.1223131.
  • Denisa, D.; Nikos, D. K.; Vlasoula, B.; Georgios, B.; Joannis, K. K. Polymeric Antimicrobial Coatings Based on Quaternary Ammonium Compounds. Coatings 2018, 8, 8–22. DOI:10.3390/coatings8010008.
  • Karthikeyan, K.; Sivakumar, P. M.; Doble, M.; Perumal, P. T. Synthesis, antibacterial Activity Evaluation and QSAR Studies of Novel Dispiropyrrolidines. Eur. J. Med. Chem. 2010, 45, 3446. DOI:10.1016/j.ejmech.2010.04.035.
  • Purushothaman, S.; Prasanna, R.; Niranjana, P.; Raghunathan, R.; Nagaraj, S.; Rengusamy, R. Synthesis, antimicrobial and Antioxidant Evaluation of Quinolines and Bis(indolyl) Methanes. Bioorg. Med. Chem. Lett. 2010, 20, 7291. DOI:10.1016/j.bmcl.2010.10.075.
  • Kumar, R. R.; Perumal, S.; Senthilkumar, P.; Yogeeswari, P.; Sriram, D. Discovery of Antimycobacterial Spiro-piperidin-4-ones: An Atom Economic, Stereoselective Synthesis, and Biological Intervention. J. Med. Chem. 2008, 51, 5731. DOI:10.1021/jm800545k.
  • Galliford, C. V.; Scheidt, K. A. Pyrrolidinyl‐Spirooxindole Natural Products as Inspirations for the Development of Potential Therapeutic Agents. Angew. Chem. Int. Ed. 2007, 46, 8748. DOI:10.1002/anie.200701342.
  • Rosenberg, S.; Leino, R. Synthesis of Spirocyclic Ethers. Synthesis 2009, 16, 2651. DOI:10.1055/s-0029-1216892.
  • Padwa, A.; Bur, S. K. The Domino Way to Heterocycles. Tetrahedron 2007, 63, 5341. DOI:10.1016/j.tet.2007.03.158.
  • Francke, W.; Kitching, W. Spiroacetals in Insects. Curr. Org. Chem. 2001, 5, 233. DOI:10.2174/1385272013375652.
  • Antonchick, A. P.; Gerding-Reimers, C.; Catarinella, M.; Schürmann, M.; Preut, H.; Ziegler, S.; Rauh, d.; Waldmann, H. Highly Enantioselective Synthesis and Cellular Evaluation of Spirooxindoles Inspired by Natural Products. Nature Chem. 2010, 2, 735. DOI:10.1038/nchem.730.
  • Yamamoto, Y.; Yamamoto, S.; Yatagai, H.; Ishihara, Y.; Maruyama, K. Lewis Acid Mediated Reactions of Organocopper Reagents. Entrainment in the Conjugate Addition to α,β-Unsaturated Ketones, esters, and Acids via the RCu·BF3 System. J. Org. Chem. 1982, 47, 119–126. DOI:10.1021/jo00340a02.
  • Frady, G. A.; Michael, G. G.; Ashraf, G. Design and Synthesis of Novel Chiral Dirhodium(II) Carboxylate Complexes for Asymmetric Cyclopropanation Reactions. Chem. Eur. J. 2016, 22, 3447–3461. DOI:10.1002/chem.201504817.
  • Fatma, A.; Omer, T. G.; Elif, B. E.; Nuket, O.; Dieter, E. K. Synthesis of New N-norbornylimide Substituted Amide Derivatives, their Reductive Heck and Domino Heck Reactions. Arkivoc 2017, 5, 244–256. DOI:10.24820/ark.5550190.p010.304.
  • Laura, S.; Ulrich, G.; Bernd, C. Synthesis and Characterization of Para-Substituted N,N'-Dihydroxybenzamidines and Their Derivatives as Model Compounds for a Class of Prodrugs. Eur. J. Org. Chem. 2014, 9, 1961–1975.
  • Jiang, K.-M.; Jin, Y.; Lin, J. 1. 3-Dipolar Cycloaddition of Uracil Derivatives with Nitrile Oxides: Synthesis of [1,2,4]oxadiazolo[4,5-c]pyrimidine-5,7(6H)-Dione Derivatives. Tetrahedron 2017, 73, 6662–6668. DOI:10.1016/j.tet.2017.10.024.
  • Darvatkar, N. B.; Wankhede, K. S.; Bhilare, S. V.; Deorukhkar, A. R.; Raut, D. G.; Vaidya, V. V.; Trivedi, G. K.; Salunkhe, M. M. 1,3‐Dipolar Cycloaddition of Nitrile Oxides with Symmetrical Tri‐ and Polycyclic Strained Olefins. J. Heterocyclic Chem. 2010, 47, 1004. DOI:10.1002/jhet.421.
  • Singh, G.; Elango, M.; Subramanian, V.; Ishar, M. P. S. Regio- and Exo-π-Facial Selective 1,3-Dipolar Cycloaddition of α-(3-Pyridyl)-N-phenylnitrone to Norbornadiene: Activation of a π-Bond of Norbornadiene and Control of Regiochemistry of Nitrone Cycloaddition by Nitrone Addition to the Other Double Bond. Heterocycles 2006, 68, 1409–1419. DOI:10.3987/COM-06-10732.
  • Chapyshev, S. V.; Anisimov, V. M. Stereo- and Regioselective Cycloaddition of Norbornene to 2,4,9-Triazidopyridine. Chem. Heterocycl. Compd. 1997, 33, 1315–1324. DOI:10.1007/BF02320334.
  • Gucma, M.; Golebiewski, W. M.; Krawczyk, M. NMR Studies on 1,3-Dipolar Cycloaddition of Nitrile Oxides to Norbornenes. J. Braz. Chem. Soc. 2013, 24, 805–813. DOI:10.5935/0103-5053.20130106.
  • Jaroskkova, L.; Fisera, L. Preparation of 2,4-Dichlorobenzoyl Substituted Isoxazolidines. Collect. Czech. Chem. Commun. 1993, 58, 588–591. DOI:10.1135/cccc19930588.
  • Fisera, L.; Pavlovic, D. 1,3-Dipolar Cycloadditions to 2,3-dimethoxycarbonyl-7-oxabicyclo[2,2,1]-2,5-heptadiene, 1,4-epoxy-1,4-dihydronaphthalene, and Exo-endo-1,6-dimethoxycarbonyl-11,12-dioxatetracyclo-[4,4,0,12,5,17,10]-3,8-Dodecadiene. Collect. Czech. Chem. Commun.1984, 49, 1990–2000. DOI:10.1135/cccc19841990.
  • Sasaki, T.; Eguchi, S.; Yamaguchi, M.; Esaki, T. Synthesis of Adamantane Derivatives. 52. 1,3-Dipolar Cycloaddition Reactions of 1-azidoadamantane. Reactivity, regioselectivity, and Carbon-13 Nuclear Magnetic Resonance Spectra of 1-(1-adamantyl)-.Delta.2-1,2,3-triazolines and -1H-1,2,3-Triazoles. J. Org. Chem. 1981, 46, 1800–1804. DOI:10.1021/jo00322a009.
  • Sasaki, T.; Kanernatsu, K.; Kayakawa, K.; Vchide, M. Studies of Bridged Benzoheterocycles. Part III. Cycloadditions of 1,4-epoxy-1,4-dihydronaphthalene to Some Dipolar Compounds and Dienes. J. Chem. Soc., Perkin Trans. 1972, 1, 2750–2755. DOI:10.1039/P19720002750.
  • Jedlovska, E.; Fisera, L. 1,3-Dipolar Cycloadditions of Heterocycles. 21. Cycloaddition of 2,5-dimethyl-3-furonitrile Oxide with Cyclic and Heterocyclic-Compounds. Chem. Pap. 1991, 45, 419–426.
  • Jedlovska, E.; Fisera, L. Preparation of 2,4-Dichlorobenzoyl-Substituted Isoxazolines and Isoxazoles. Chem. Pap. 1992, 46, 238–243.
  • Plumet, J.; Escobar, G.; Manzano, C.; Arjona, O.; Carrupt, P. A.; Vogel, P. Regioselectivity of 1,3-Dipolar Cycloadditions Controlled by Remote Substitution and Lewis Acid Catalysts. Heterocycles 1986, 24, 1535–1538. DOI:10.3987/R-1986-06-1535.
  • Rajkumar, V.; Aslam, N. A.; Reddy, C.; Babu, S. A. Unactivated Norbornenes in [3 + 2] Cycloadditions: Remarkably Stereo-controlled Entry into Norbornane-Fused Spirooxindolopyrrolidines, Spiro-1,3-indandionolylpyrrolidines, and Spirooxindolopyrrolizidines. Synlett 2012, 4, 549–556. DOI:10.1055/s-0031-1290342.
  • Arjona, O.; Dios, A.; Pradilla, R. F.; Mallo, A.; Plumet, J. Polar vs Steric Effects in the 1,3-dipolar Cycloaddition Reactions of Acetonitrile Oxide and 2-endO-acetoxy-5-halo-7-oxabicyclo[2.2.1]hept-5-en-2-exo-Carbonitrile. Tetrahedron 1990, 46, 8179–8186. DOI:10.1016/S0040-4020(01)81474-5.
  • Arjona, O.; Dominguez, C.; Pradilla, R. F.; Mallo, A.; Manzano, C.; Plumet, J. 1,3-Dipolar Cycloadditions between Nitrile Oxides and Substituted 7-oxabicyclo[2.2.1]Heptenes. J. Org. Chem. 1989, 54, 5883–5887. DOI:10.1021/jo00286a018.
  • Mayo, P.; Hecnar, T.; Tam, W. 1,3-Dipolar Cycloaddition of Nitrile Oxides with Unsymmetrically Substituted Norbornenes. Tetrahedron 2001, 57, 5931–5941. DOI: 10.1016/S0040-4020(01)00573-7.
  • Namboothiri, I. N. N.; Rastogi, N.; Ganguly, B.; Mobin, S. M.; Cojocaru, M. Selectivities in the 1,3-Dipolar Cycloaddition of Nitrile Oxides to Dicyclopentadiene and Its Derivatives. Tetrahedron 2004, 60, 1453. DOI:10.1016/j.tet.2003.12.026.
  • Bakavoli, M.; Gholizadeh, M.; Eshghi, H.; Izadyar, M.; Tajabadi, J. The Origin of Regio- and Stereoselectivity in 1,3-dipolar Cycloaddition of Nitrile Oxides with C1-substituted 7- oxabenzonorbornadienes, A DFT Study. RSC Adv. 2015, 5, 38489–38498. DOI:10.1039/C5RA04254B.
  • Mercalli, V.; Meneghetti, F.; Tron, G. C. Isocyanide-Mediated Multicomponent Synthesis of C-Oximinoamidines. Org. Lett. 2013, 15, 5902–5905. DOI:10.1021/ol403062m.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.