546
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Scalable synthesis of multi-substituted aryl-phosphonates: Exploring the limits of isoretical expansion and the synthesis of new triazene-based phosphonates

& ORCID Icon
Pages 231-244 | Received 13 Aug 2019, Accepted 25 Sep 2019, Published online: 07 Oct 2019

References

  • Liu, J.; Thallapally, P. K.; McGrail, B. P.; Brown, D. R.; Liu, J. Progress in Adsorption-Based CO2 Capture by Metal–Organic Frameworks. Chem. Soc. Rev. 2012, 41, 2308–2322. DOI: 10.1039/C1CS15221A.
  • Taddei, M. When Defects Turn into Virtues: The Curious Case of Zirconium-Based Metal-Organic Frameworks. Coord. Chem. Rev. 2017, 343, 1–24. DOI: 10.1016/j.ccr.2017.04.010.
  • Taddei, M.; Costantino, F.; Vivani, R.; Sabatini, S.; Lim, S.-H.; Cohen, S. M. The Use of a Rigid Tritopic Phosphonic Ligand for the Synthesis of a Robust Honeycomb-Like Layered Zirconium Phosphonate Framework. Chem. Commun. 2014, 50, 5737–5740. DOI: 10.1039/C4CC01253D.
  • Taddei, M.; Costantino, F.; Marmottini, F.; Comotti, A.; Sozzani, P.; Vivani, R. The First Route to Highly Stable Crystalline Microporous Zirconium Phosphonate Metal–Organic Frameworks. Chem. Commun. 2014, 50, 14831–14834. DOI: 10.1039/C4CC06223J.
  • Shearan, S. J. I.; Stock, N.; Franziska Emmerling, F.; Demel, J.; Wright, P. A.; Demadis, K. D.; Vassaki, M.; Costantino, F.; Vivani, R.; Sallard, S.; et al. New Directions in Metal Phosphonate and Phosphinate Chemistry. Crystals 2019, 9, 270. DOI: 10.3390/cryst9050270.
  • Shimizu, G. K. H.; Vaidhyanathan, R.; Taylor, J. M. Phosphonate and Sulfonate Metal Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1430–1449. DOI: 10.1039/b802423p.
  • Gielen, D.; Boshell, F.; Saygin, D. Climate and Energy Challenges for Materials Science. Nat. Mater. 2016, 5, 117–120. DOI: 10.1038/nmat4545.
  • Bishop, M.; Bott, S. G.; Barron, A. R. A New Mechanism for Cement Hydration Inhibition: Solid-State Chemistry of Calcium Nitrilotris(Methylene)Triphosphonate. Chem. Mater. 2003, 15, 3074–3088. DOI: 10.1021/cm0302431.
  • Mason, M. R.; Mashuta, M. S.; Richardson, J. F. Cyclic and Cubic Organophosphonates of Gallium and Their Relationship to Structural Motifs in Gallophosphate Molecular Sieves. Angew. Chem. Int. Ed. Engl. 1997, 36, 239–241. DOI: 10.1002/anie.199702391.
  • Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. Stereoselective Synthesis of Vinylphosphonate. Tetra. Lett. 1980, 21, 3595–3598. DOI: 10.1016/0040-4039(80)80245-0.
  • Bunnett, J. F.; Weiss, R. H. Radical Anion Arylation: Diethyl Phenylphosphonate. Org. Syn. 1978, 58, 134–137. DOI: 10.15227/orgsyn.058.0134.
  • Bunnett, J. F.; Mitchel, E.; Galli, C. The Effect of Substituents in SRNl Reactions. Some Synthetic Applications. Tetrahedron 1985, 41, 4119–4132. DOI: 10.1016/S0040-4020(01)97188-1.
  • Effenburger, F.; Kottmann, H. Oxidative Phosphonylation of Aromatic Compounds. Tetrahedron 1985, 41, 4171–4182. DOI: 10.1016/S0040-4020(01)97192-3.
  • Lu, X.; Zhu, J. Palladium-Catalyzed Reaction of Aryl Polyfluoroalkanesulfonates with O,O-Dialkyl Phosphonates. Synthesis 1987, 1987, 726–727. DOI: 10.1055/s-1987-28063.
  • Yuan, C.; Feng, H. Studies on Organophosphorus Compounds XL. An One-Pot Procedure for the Mono-O-Alkylation of Phosphonic Acid: A Facile Synthesis of Alkyl Hydrogen p-Substituted Phenylphosphonates. Synthesis 1990, 1990, 140–141. DOI: 10.1055/s-1990-26813.
  • Gooßen, L. J.; Dezfuli, M. K. Practical Protocol for the Palladium-Catalyzed Synthesis of Arylphosphonates from Bromoarenes and Diethyl Phosphite. Synlett 2005, 16, 445–448. DOI: 10.1055/s-2005-862372.
  • Zhou, T.; Chen, Z. C. Hypervalent Iodine in Synthesis. 52. Palladium-Catalyzed Arylation of O,O-Dialkyl Phosphites with Diaryliodonium Salts: A Convenient Method for Synthesis of Arylphosphonates. Synth. Commun. 2001, 31, 3289–3294. DOI: 10.1081/SCC-100106038.
  • Kohler, M. C.; Stockland, R. A. Jr.; Rath, N. P. Steric and Electronic Effects on Arylphosphonate Elimination from Organopalladium Complexes. Organometallics 2006, 25, 5746–5756. DOI: 10.1021/om060662i.
  • Kalek, M.; Stawinski, J. Pd(0)-Catalyzed Phosphorus − Carbon Bond Formation. Mechanistic and Synthetic Studies on the Role of the Palladium Sources and Anionic Additives. Organometallics 2007, 26, 5840–5847. DOI: 10.1021/om700797k.
  • Kohler, M. C.; Sokol, J. G.; Stockland, R. A. Jr. Development of a Room Temperature Hirao Reaction. Tetra. Lett. 2009, 50, 457–459. DOI: 10.1016/j.tetlet.2008.11.040.
  • Luo, Y.; Wu, J. Synthesis of Arylphosphonates via Palladium-Catalyzed Coupling Reactions of Aryl Imidazolylsulfonates with H-Phosphonate Diesters. Organometallics 2009, 28, 6823–6826. DOI: 10.1021/om900771v.
  • Kalek, M.; Jezowska, M.; Stawinski, J. Preparation of Arylphosphonates by Palladium(0)‐Catalyzed Cross‐Coupling in the Presence of Acetate Additives: Synthetic and Mechanistic Studies. Adv. Synth. Catal. 2009, 351, 3207–3216. DOI: 10.1002/adsc.200900590.
  • Andaloussi, M.; Lindh, J.; Sävmarker, J.; Sjöberg, P. J. R.; Larhed, M. Microwave‐Promoted Palladium(II)‐Catalyzed C-P Bond Formation by Using Arylboronic Acids or Aryltrifluoroborates. Chem. Eur. J. 2009, 15, 13069–13074. DOI: 10.1002/chem.200901473.
  • Berrino, R.; Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Stabile, P. Arenediazonium Tetrafluoroborates in Palladium-Catalyzed C–P Bond-Forming Reactions. Synthesis of Arylphosphonates, -Phosphine Oxides, and -Phosphines. Org. Biomol. Chem. 2010, 8, 4518–4520. DOI: 10.1039/c0ob00243g.
  • Huang, C.; Tang, X.; Fu, H.; Jiang, Y.; Zhao, Y. Proline/Pipecolinic Acid-Promoted Copper-Catalyzed P-Arylation. J. Org. Chem. 2006, 71, 5020–5022. DOI: 10.1021/jo060492j.
  • Rao, H.; Jin, Y.; Fu, H.; Jiang, Y.; Zhao, Y. A Versatile and Efficient Ligand for Copper‐Catalyzed Formation of C-N, C-O, and P-C Bonds: Pyrrolidine‐2‐Phosphonic Acid Phenyl Monoester. Chem. Eur. J. 2006, 12, 3636–3646. DOI: 10.1002/chem.200501473.
  • Zhuang, R.; Xu, J.; Cai, Z.; Tang, G.; Fang, M.; Zhao, Y. Copper-Catalyzed C − P Bond Construction via Direct Coupling of Phenylboronic Acids with H-Phosphonate Diesters. Org. Lett. 2011, 13, 2110–2113. DOI: 10.1021/ol200465z.
  • Kagayama, T.; Nakano, A.; Sakaguchi, S.; Ishii, Y. Phosphonation of Arenes with Dialkyl Phosphites Catalyzed by Mn(II)/Co(II)/O2 Redox Couple. Org. Lett. 2006, 8, 407–409. DOI: 10.1021/ol052406s.
  • Guzmán, A.; Alfaro, R.; Díaz, E. Synthesis of Aryl Phosphonates by Reaction of Grignard Reagents with Diethyl Cyanophosphonate. Synth. Commun. 1999, 29, 3021–3024. DOI: 10.1080/00397919908086478.
  • He, Y.; Wu, H.; Toste, F. D. A Dual Catalytic Strategy for Carbon–Phosphorus Cross-Coupling via Gold and Photoredox Catalysis. Chem. Sci. 2015, 6, 1194–1198. DOI: 10.1039/C4SC03092C.
  • Khrizanforov, M. N.; Strekalova, S. O.; Kholin, K. V.; Khrizanforova, V. V.; Kadirov, M. K.; Gryaznova, T. V.; Budnikova, Y. H. Novel Approach to Metal-Induced Oxidative Phosphorylation of Aromatic Compounds. Catal. Today 2017, 279, 133–141. DOI: 10.1016/j.cattod.2016.06.001.
  • Jablonkai, E.; Keglevich, G. P-C Bond Formation by Coupling Reactions Utilizing > P(O)H Species as the Reagents. Curr. Org. Synth. 2014, 11, 429–453. DOI: 10.2174/15701794113109990066.
  • Belabassi, Y.; Alzghari, S.; Montchamp, J. L. Revisiting the Hirao Cross-Coupling: Improved Synthesis of Aryl and Heteroaryl Phosphonates. J. Organomet. Chem. 2008, 693, 3171–3178. DOI: 10.1016/j.jorganchem.2008.07.020.
  • Wang, Z.; Heising, J. M.; Clearfield, A. Sulfonated Microporous Organic − Inorganic Hybrids as Strong Bronsted Acids. J. Am. Chem. Soc. 2003, 125, 10375–10383. DOI: 10.1021/ja030226c.
  • Clearfield, A.; Wang, Z.; Bellinghausen, P. J. Highly Porous Zirconium Aryldiphosphonates and Their Conversion to Strong Bronsted Acids. Solid State Chem. 2002, 167, 376–385. DOI: 10.1006/jssc.2002.9570.
  • Jardine, R. V.; Gray, A. H.; Reesor, J. B. Peak Doubling in the Nuclear Magnetic Resonance Spectra of Certain Phosphorus Esters. Can. J. Chem. 1969, 47, 35–41. DOI: 10.1139/v69-004.
  • Firmino, A. D. G.; Mendes, R. F.; Ananias, D.; Vilela, S. M. F.; Carlos, L. D.; Tomé, J. P. C.; Rocha, J.; Almeida Paz, F. A. Microwave Synthesis of a Photoluminescent Metal-Organic Framework Based on a Rigid Tetraphosphonate Linker. Inorg. Chim. Acta 2017, 455, 584–594. DOI: 0.1016/j.ica.2016.05.029. DOI: 10.1016/j.ica.2016.05.029.
  • Mehring, M. Two‐ and Three‐Dimensional Hydrogen‐Bonded Networks Built from 1,3,5‐[(HO)2(O)P]3C6H3 and 4‐(Dimethylamino)Pyridine. Eur. J. Inorg. Chem. 2004, 16, 3240–3246. DOI: 10.1002/ejic.200300843.
  • Reiter, S. A.; Assmann, B.; Nogai, S. D.; Mitzel, N. W. Schmidbaur, H. (Benzene‐1,3,5‐Triyl)Tris[Phosphine] (C6H3(PH2)3) and (Benzene‐1,3,5‐Triyl)Tris[Phosphonic Acid] (C6H3[P(O)(OH)2. Absence of Hydrogen Bonding in Solid Primary Phosphines. Helv. Chim. Acta 2002, 85, 1140–1150. DOI: 10.1002/1522-2675(200204)85:4<1140::AID-HLCA1140>3.0.CO;2-X.
  • Henn, M.; Jurkschat, K.; Mansfeld, D.; Mehring, M.; Schürmann, M. Synthesis and Structure of and DFT-Studies on 1,3,5-[P(O)(i-PrO)2]3C6H3 and Its CHCl3 Adduct: Analysis of the Cl3C–H⋯OP Hydrogen Bond. J. Mol. Struct. 2004, 697, 213–220. DOI: 10.1016/j.molstruc.2004.04.013.
  • Beckmann, J.; Rüttinger, R.; Schwich, T. 1,3,5-Benzene-Tri-p-Phenylphosphonic Acid. A New Building Block in Supramolecular Chemistry. Cryst. Growth Des. 2008, 8, 3271–3276. DOI: 10.1021/cg8000569.
  • Barbee, D. A Design Approach to the Synthesis and Characterization of Metal Phosphonate MOFs. Ph.D. Thesis, Rice University, Houston, TX, 2019.
  • Gupta, M. P.; Prasad, S. M. The Crystal Structure of α-Bromoacetophenone. Acta Crystallogr. B Struct. Crystallogr. Cryst. Chem. 1971, B27, 1649–1653. DOI: 10.1107/S0567740871004485.
  • Khotina, I. A.; Consonni, R.; Kushakova, N. S.; Porzio, W.; Giovanella, U.; Kovalev, A. I.; Babushkina, M. A.; Peregudov, A. S.; Destri, S. Branched Polyphenylenes and Phenylene Dendrimers: NMR and Optical Studies. Eur. Poly. J. 2013, 49, 4224–4237. DOI: 10.1016/j.eurpolymj.2013.10.002.
  • Plater, J. M.; McKay, M.; Jackson, T. Synthesis of 1,3,5-Tris[4-(Diarylamino)Phenyl]Benzene and 1,3,5-Tris(Diarylamino)Benzene Derivatives. J. Chem. Soc. Perkin Trans. 1 2000, 2695–2701. DOI: 10.1039/b002928i.
  • Hermer, N.; Stock, N. The New Triazine-Based Porous Copper Phosphonate [Cu3(PPT)(H2O)3]·10H2O. Dalton Trans. 2015, 44, 3720–3723. DOI: 10.1039/C4DT03698K.
  • Kirai, N.; Yamamoto, Y. Homocoupling of Arylboronic Acids Catalyzed by 1,10‐Phenanthroline‐Ligated Copper Complexes in Air. Eur. J. Org. Chem. 2009, 2009, 1864–1867. DOI: 10.1002/ejoc.200900173.
  • Ouellette, W.; Wang, G.; Liu, H.; Yee, G. T.; O’Connor, C. J.; Zubieta, J. The Hydrothermal and Structural Chemistry of Oxovanadium − Arylphosphonate Networks and Frameworks. Inorg. Chem. 2009, 48, 953–963. DOI: 10.1021/ic801450m.
  • Siddall, T. H.; Prohaska, C. A. Conformation of Organophosphorus Compounds. II. Proton Magnetic Resonance Studies of Some Phosphites, Phosphonites, Phosphates, Phosphonates and Additional Phosphinates. J. Am. Chem. Soc. 1962, 84, 3467–3473. DOI: 10.1021/ja00877a010.
  • Barron, A. R.; Lyons, D.; Wilkinson, G.; Motevalli, M.; Howes, A. J.; Hursthouse, M. B. Synthesis and Characterisation of Tungsten and Rhenium Aluminopolyhydrides: X-Ray Crystal Structures of (Me3P)3H3W(μ-H)2Al(H)(μ-OBun)2Al(H)(μ-H)2 WH3(PMe3)3 and (Me3P)3H3W(μ-H)2Al(H)(μ-H)2WH3(PMe3)3. J. Chem. Soc. Dalton Trans. 1986, 279–285. DOI: 10.1039/DT9860000279.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03. Gaussian, Inc.: Wallingford CT, 2016.
  • Becke, A. D. Density‐Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. DOI: 10.1063/1.464913.
  • Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. DOI: 10.1021/j100096a001.
  • Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, B37, 785–789. DOI: 10.1103/PhysRevB.37.785.
  • Branch, C. S.; Barron, A. R. Arene − Mercury Complexes Stabilized by Gallium Chloride: Relative Rates of H/D and Arene Exchange. J. Am. Chem. Soc. 2002, 124, 14156–14161. DOI: 10.1021/ja0206590.
  • Barron, A. R. What Is the Reason for the Anomalous C-Substituent Effects in the Lewis Acid Catalyzed Thermal Decomposition of [Me2Al(μ-or)]2? Main Group Chem. 2015, 14, 87–96. DOI: 10.3233/MGC-150186.
  • Francis, J. A.; McMahon, C. N.; Bott, S. G.; Barron, A. R. Steric Effects in Aluminum Compounds Containing Monoanionic Potentially Bidentate Ligands: Towards a Quantitative Measure of Steric Bulk. Organometallics 1999, 18, 4399–4416. DOI: 10.1021/om980907u.
  • Barron, A. R.; Dobbs, K. D.; Francl, M. M. A Theoretical Investigation of Aluminum-Oxygen π-Bonding in 3- and 4-Coordinate Aluminum Alkoxides. J. Am. Chem. Soc. 1991, 113, 39–43. DOI: 10.1021/ja00001a007.
  • Ghosh, S.; Barron, A. R. Is the Formation of Poly-CO2 Stabilized by Lewis Base Moieties in N- and S-Doped Porous Carbon? Carbon 2016, 2, 5. DOI: 10.3390/c2010005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.