126
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

One-pot synthesis of imidazo[1,2-α]pyridine thioethers using imidazo[1,2-α]pyridines, arylsulfonyl chlorides and hydrazine

ORCID Icon, & ORCID Icon
Pages 256-262 | Received 30 Jul 2019, Accepted 25 Oct 2019, Published online: 23 Dec 2019

References

  • (a) Liu, R.; Yu, X.; Wallqvist, A. Data-Driven Identification of Structural Alerts for Mitigating the Risk of Drug-Induced Human Liver Injuries. J. Cheminform. 2015, 7, 4. DOI: 10.1186/s13321-015-0053-y. (b) Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. Data-Mining for Sulfur and Fluorine: An Evaluation of Pharmaceuticals to Reveal Opportunities for Drug Design and Discovery. J. Med. Chem. 2014, 57, 2832–2842. DOI: 10.1021/jm401375q. (c) Ritchie, T. J.; Macdonald, S. J. Physicochemical Descriptors of Aromatic Character and Their Use in Drug Discovery. J. Med. Chem. 2014, 57, 7206–7215. DOI: 10.1021/jm500515d. (d) Kucher, O. V.; Kolodyazhnaya, A. O.; Smolii, O. B.; Nazarenko, N. K.; Kubyshkin, V.; Mykhailiuk, P. K.; Tolmachev, A. A. Lipase Kinetic Enantiomeric Resolution of 1-Heteroarylethanols. Tetrahedron: Asymmetry 2016, 27, 341–345. DOI: 10.1016/j.tetasy.2016.02.012.
  • (a) Blunt, J. W.; Copp, B. R.; Keyzers, R. A.; Munro, M. H.; Prinsep, M. R. Marine natural products. Nat. Prod. Rep. 2015, 32, 116–211. DOI: 10.1039/C4NP00144C. (b) Gudmundsson, K. S.; Williams, J. D.; Drach, J. C.; Townsend, L. B. Synthesis and Antiviral Activity of Novel Erythrofuranosyl Imidazo[1,2-α]pyridine C-Nucleosides Constructed via Palladium Coupling of Iodoimidazo[1,2-α]pyridines and Dihydrofuran. J. Med. Chem. 2003, 46, 1449–1455. DOI: 10.1021/jm020339r. (c) Moraski, G. C.; Miller, P. A.; Bailey, M. A.; Ollinger, J.; Parish, T.; Boshoff, H. I.; Cho, S.; Anderson, J. R.; Mulugeta, S.; Franzblau, S. G.; Miller, M. J. Putting TB to Rest: Transformation of the Sleep Aid, Ambien and “Anagrams” Generated Potent Anti-tuberculosis Agents. ACS Infect. Dis. 2015, 1, 85–90. DOI: 10.1021/id500008t.
  • (a) Barradas, J. S.; Errea, M. I.; D’Accorso, N. B.; Sepulveda, C. S.; Damonte, E. B. Imidazo[2,1-b]thiazole carbohydrate derivatives: Synthesis and antiviral activity against Junin virus, agent of Argentine hemorrhagic fever. Eur. J. Med. Chem. 2011, 46, 259–264. DOI: 10.1016/j.ejmech.2010.11.012. (b) Juspin, T.; Laget, M.; Terme, T.; Azas, N.; Vanelle, P. TDAE-Assisted Synthesis of New Imidazo[2,1-b]Thiazole Derivatives as Anti-infectious Agents. Eur. J. Med. Chem. 2010, 45, 840–845. DOI: 10.1016/j.ejmech.2009.10.048.
  • Hirayama, T.; Okaniwa, M.; Banno, H.; Kakei, H.; Ohashi, A.; Iwai, K.; Ohori, M.; Mori, K.; Gotou, M.; Kawamoto, T.; Yokota, A.; Ishikawa, T. Synthetic Studies on Centromere-Associated Protein-E (CENP-E) Inhibitors: 2. Application of Electrostatic Potential Map (EPM) and Structure-Based Modeling to Imidazo[1,2-α]pyridine Derivatives as Anti-Tumor Agents. J. Med. Chem. 2015, 58, 8036–8053. DOI: 10.1021/acs.jmedchem.5b00836.
  • (a) Xi, G. L.; Liu, Z. Q. Introducing Ferrocene into Imidazo[1,2-α]Pyridine by Groebke Three-Component-Reaction for Scavenging Radicals and Inhibiting DNA Oxidation. Tetrahedron. 2015, 71, 9602–9610. DOI: 10.1016/j.tet.2015.10.080. (b) Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Varoli, L.; Calonghi, N.; Cappadone, C.; Farruggia, G.; Zini, M.; Stefanelli, C.; Masotti, L.; Radin, N. S.; Shoemaker, R. H. New Antitumor Imidazo[2,1-b]thiazole Guanylhydrazones and Analogues. J. Med. Chem. 2008, 51, 809–816. DOI: 10.1021/jm701246g. (c) Park, J. H.; El-Gamal, M. I.; Lee, Y. S.; Oh, C. H. New Imidazo[2,1-b]Thiazole Derivatives: Synthesis, In Vitro Anticancer Evaluation, and In Silico Studies. Eur. J. Med. Chem. 2011, 46, 5769–5777. DOI: 10.1016/j.ejmech.2011.08.024. (d) Ali, A. R.; El-Bendary, E. R.; Ghaly, M. A.; Shehata, I. A. Synthesis, In Vitro Anticancer Evaluation and In Silico Studies of Novel Imidazo[2,1-b]Thiazole Derivatives Bearing Pyrazole Moieties. Eur. J. Med. Chem. 2014, 75, 492–500. DOI: 10.1016/j.ejmech.2013.12.010.
  • Chen, C.; Bandoa, K.; Ashinoa, H.; Taguchi, K.; Shiraishi, H.; Shima, K.; Fujimotoa, O.; Kitamuraa, C.; Morimotoa, Y.; Kasaharaa, H.; Minamizawaa, T.; Jiang, C.; Zhang, M.-R.; Suhara, T.; Higuchi, M.; Yamada, K.; Ji, B. Biological Evaluation of the Radioiodinated Imidazo[1,2-α]Pyridine Derivative DRK092 for Amyloid-Imaging in Mouse Model of Alzheimer’s Disease. Neurosci. Lett. 2014, 581, 103–108. DOI: 10.1016/j.neulet.2014.08.036.
  • (a) Rahaman, R.; Das, S.; Barman, P. Visible-Light-Induced Regioselective Sulfenylation of Imidazopyridines with Thiols Under Transition Metal-Free Conditions. Green Chem. 2018, 20, 141–147. DOI: 10.1039/C7GC02906C. (b) Maddi, R. R.; Shirsat, P. K.; Kumar, S.; Meshram, H. M. N-Bromosuccinimide Promoted Direct Thiolation of Imidazoheteroaryl C-H bonds with Disulfides. Chem. Select. 2017, 2, 1544–1547. DOI: 10.1002/slct.201601460.
  • (a) Ravi, C.; Joshi, A.; Adimurthy, S. C3 Sulfenylation of N-Heteroarenes in Water under Catalyst-Free Conditions. Eur. J. Org. Chem. 2017, 2017, 3646–3651. DOI: 10.1002/ejoc.201700487. (b) Zhu, W.; Ding, Y.; Bian, Z.; Xie, P.; Xu, B.; Tang, Q.; Wu, W.; Zhou, A. One-Pot Three-Component Synthesis of Alkylthio-/Arylthio-Substituted Imidazo[1,2-α]pyridine Derivatives via C(sp2)–H Functionalization. Adv. Synth. Catal. 2017, 359, 2215–2221. DOI: 10.1002/adsc.201601431.
  • (a) Bettanin, L.; Saba, S.; Doerner, C. V.; Franco, M. S.; Godoi, M.; Rafique, J.; Braga, A. NH4I-Catalyzed Chalcogen(S/Se)-Functionalization of 5-membered N-heteroaryls Under Metal-Free Conditions. Tetrahedron. 2018, 74, 3971–3980. DOI: 10.1016/j.tet.2018.05.084. (b) Xiao, G.; Min, H.; Zheng, Z.; Deng, G.; Liang, Y. Copper-Catalyzed Three-Component Reaction of Imidazo[1,2-α]Pyridine with Elemental Sulfur and Arylboronic Acid to Produce Sulfenylimidazo[1,2-α]Pyridines. Chin. Chem. Lett. 2018, 29, 1363–1366. DOI: 10.1016/j.cclet.2017.12.013. (c) Rafique, J.; Saba, S.; Rosrio, A. R.; Braga, A. L. Regioselective, Solvent-and Metal-Free Chalcogenation of Imidazo[1,2-α]Pyridines by Employing I2/DMSO as Catalytic Oxidation System. Chem. Eur. J. 2016, 22, 11854–11862. DOI: 10.1002/chem.201600800. (d) Ji, X.; Zhou, S.; Chen, F.; Zhang, X.; Tang, R. Direct Sulfenylation of Imidazoheterocycles with Disulfides in an Iodine–Hydrogen Peroxide System. Synthesis. 2015, 47, 659–671. DOI: 10.1055/s-0034-1379941.
  • (a) Ravi, C.; Mohan, D. C.; Adimurthy, S. N-Chlorosuccinimide-Promoted Regioselective Sulfenylation of Imidazoheterocycles at Room Temperature. Org. Lett. 2014, 16, 2978−2981. DOI: 10.1021/ol501117z. (b) Iida, H.; Demizu, R.; Ohkado, R. Tandem Flavin-Iodine-Catalyzed Aerobic Oxidative Sulfenylation of Imidazo[1,2-α]Pyridines with Thiols. J. Org. Chem. 2018, 83, 12291–12296. DOI: 10.1021/acs.joc.8b01878. (c) Hiebel, M. A.; Berteina-Raboina, S. Iodine-Catalyzed Regioselective Sulfenylation of Imidazoheterocycles in PEG400. Green Chem. 2015, 17, 937–944. DOI: 10.1039/C4GC01462F.
  • Zhao, W.; Xie, P.; Bian, Z.; Zhou, A.; Ge, H.; Zhang, M.; Ding, Y.; Zheng, L. Ammonium Iodide-induced Non-radical Regioselective Sulfenylation of Flavones via a C-H Functionalization Process. J. Org. Chem. 2015, 80, 9167–9175. DOI: 10.1021/acs.joc.5b01602.
  • (a) Ravi, C.; Mohan, D. C.; Adimurthy, S. Dual Role of p–Tosylchloride: Copper–Catalyzed Sulfenylation and Metal free Methylthiolation of Imidazo[1,2-α]pyridines. Org. Biomol. Chem. 2016, 14, 2282–2290. DOI: 10.1039/C5OB02475G. (b) Wang, D.; Guo, S.; Zhang, R.; Lin, S.; Yan, Z. TBAI–HBr System Mediated Generation of Various Thioethers with Benzenesulfonyl Chlorides in PEG400. RSC Adv. 2016, 6, 54377–54381. DOI: 10.1039/c6ra02302a. (c) Guo, T.; Wei, X. Ammonium Iodide-Mediated Sulfenylation of 4-Hydroxycoumarins or 4-Hydroxyquinolinones with a Sulfonyl Chloride as a Sulfur Source. Synlett. 2017, 28, 2499–2504. DOI: 10.1055/s-0036-1589083.
  • Huang, X.; Wang, S.; Li, B.; Wang, X.; Ge, Z.; Li, R. Iodine–Triphenylphosphine Mediated Sulfenylation of Imidazoheterocycles with Sodium Sulfinates. RSC Adv. 2015, 5, 22654–22657. DOI: 10.1039/C4RA17237J.
  • Bagdi, A. K.; Mitra, S.; Ghosh, M.; Hajra, A. Iodine-Catalyzed Regioselective Thiolation of Imidazo[1,2-α]Pyridines Using Sulfonyl Hydrazides as a Thiol Surrogate. Org. Biomol. Chem. 2015, 13, 3314–3320. DOI: 10.1039/C5OB00033E.
  • (a) Chowdhury, S. R.; Fadikar, P.; Hoque, I. UI.; Maity, S. Catalyst-Free Regioselective Sulfenylation of Imidazoheterocycles with Sulfonyl Hydrazides in Water. Asian J. Org. Chem. 2018, 7, 332–336. DOI: 10.1002/ajoc.201700670. (b) Yang, Y.; Zhang, S.; Tang, L.; Hu, Y.; Zha, Z.; Wang, Z. Catalyst-Free Thiolation of Indoles with Sulfonyl Hydrazides for the Synthesis of 3-Sulfenylindoles in Water. Green Chem. 2016, 18, 2609–2613. DOI: 10.1039/C6GC00313C.
  • (a) Iida, H.; Demizu, R.;Ohkado, R. Tandem Flavin-Iodine-Catalyzed Aerobic Oxidative Sulfenylation of Imidazo[1,2-α]Pyridines with Thiols. J. Org. Chem. 2018, 83, 12291–12296. DOI: 10.1021/acs.joc.8b01878. (b) Huang, X.; Chen, Y.; Zhen, S.; Song, L.; Gao, M.; Zhang, P.; Li, H.; Yuan, B.; Yang, G. Cobalt-Catalyzed Aerobic Cross-dehydrogenative Coupling of C-H and Thiols in Water for C-S Formation. J. Org. Chem. 2018, 83, 7331–7340. DOI: 10.1021/acs.joc.7b02718. (c) Ding, Y.; Wu, W.; Zhao, W.; Li, Y.; Xie, P.; Huang, Y.; Liu, Y.; Zhou, A. Generation of Thioethers via Direct C-H Functionalization with Sodium Benzenesulfinate as Sulfur Source. Org. Biomol. Chem. 2016, 14, 1428–1431. DOI: 10.1039/C5OB02073E. (d) Wu, W.; Ding, Y.; Xie, P.; Tang, Q.; Pittman, M. U.; Zhou, A. Synthesis of Imidazol[1,2-α]Pyridine Thioethers via Using Sulfur Powder and Halides as Reactants. Tetrahedron. 2017, 73, 2151–2158. DOI: 10.1016/j.tet.2017.02.065. (e) Chen, Z.; Ren, H.; Cao, G.; Zhang, F.; Li, H.; Xu, J.; Miao, M. Metal-Free Mediated C-3 Methylsulfanylation of Imidazo[1,2-α]pyridines with Dimethyl Sulfoxide as a Methylsulfanylating Agent. Synlett. 2017, 28, 1795–1800. DOI: 10.1055/s-0036-1588419. (f) Yuan, Y.; Cao, Y.; Qiao, J.; Lin, Y.; Jiang, X.; Weng, Y.; Tang, S.; Lei, A. Electrochemical Oxidative C-H Sulfenylation of Imidazopyridines with Hydrogen Evolution. Chin. J. Chem. 2018, 37, 49–52. DOI: 10.1002/cjoc.201800405.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.