238
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Theoretical study of encapsulation of Floxuridine anticancer drug into BN (9,9-7) nanotube for medical application

, , &
Pages 293-306 | Received 11 Jun 2019, Accepted 26 Oct 2019, Published online: 06 Nov 2019

References

  • Power, D.-G.; Kemeny, N.-E. The Role of Floxuridine in Metastatic Liver Disease. Mol. Cancer. Ther. 2009, 8, 1015–1025. DOI: 10.1158/1535-7163.MCT-08-0709.
  • Stefano, G.-D.; Busi, C.; Fiume, L. Floxuridine Coupling with Lactosaminated Human Albumin to Increase Drug Efficacy on Liver Micrometastases. Dig. Liver. Dis. 2002, 34, 439–446. DOI: 10.1016/S1590-8658(02)80042-1.
  • Shun-Rong, J.; Chen, L.; Bo, Z.; Feng, Y.; Jin, X.; Jiang, L.; Chen, J.; De-Liang, F.; Quan-Xing, N.; Xian-Jun, Y. Carbon Nanotubes in Cancer Diagnosis and Therapy. Biochim. Biophys. Acta. Rev. Cancer 2010, 1806, 29–35. DOI: 10.1016/j.bbcan.2010.02.004.
  • Bertrand, N.; Leroux, J.-C. The Journey of a Drug Carrier in the Body: An Anatomo-Physiological Perspective. J. Contr. Release 2012, 161, 152–163. DOI: 10.1016/j.jconrel.2011.09.098.
  • Karimi, M.; Ghasemi, A.; Sahandi Zangabad, P.; Rahighi, R.; Moosavi Basri, S.-M.; Mirshekari, H.; Amiri, M.; Shafaei Pishabad, Z.; Aslani, A.; Bozorgomid, M.; et al. Smart Micro/Nanoparticles in Stimulus-Responsive Drug/Gene Delivery Systems. Chem. Soc. Rev. 2016, 45, 1457–1501. DOI: 10.1039/C5CS00798D.
  • Ferrari, M. Cancer Nanotechnology: Opportunities and Challenges. Nat. Rev. Cancer 2005, 5, 161–171. DOI: 10.1038/nrc1566.
  • Jain, K.-K. Applications of Nanobiotechnology in Clinical Diagnostics. Clin. Chem. 2007, 53, 2002–2009. DOI: 10.1373/clinchem.2007.090795.
  • Kim, P.-S.; Djazayeri, S.; Zeineldin, R. Novel Nanotechnology Approaches to Diagnosis and Therapy of Ovarian Cancer. Gynecol. Oncol. 2011, 120, 393–403. DOI: 10.1016/j.ygyno.2010.11.029.
  • Kostarelos, K.; Bianco, A.; Prato, M. Promises, Facts and Challenges for Carbon Nanotubes in Imaging and Therapeutics. Nature Nanotech. 2009, 4, 627–633. DOI: 10.1038/nnano.2009.241.
  • Bawa, R. NanoBiotech 2008: Exploring Global Advances in Nanomedicine. Nanomedicine 2009, 5, 5–7. DOI: 10.1016/j.nano.2009.01.004.
  • Park, J.; Wrzesinski, S.-H.; Stern, E.; Look, M.; Criscione, J.; Ragheb, R.; Jay, S.-M.; Demento, S.-L.; Agawu, A.; Limon, P.-L. Combination Delivery of TGF-β Inhibitor and IL-2 by Nanoscale Liposomal Polymeric Gels Enhances Tumour Immunotherapy. Nature Mater. 2012, 11, 895–905. DOI: 10.1038/nmat3355.
  • Adlakha-Hutcheon, G.; Bally, M.-B.; Shew, C.-R.; Madden, T.-D. Controlled Destabilization of a Liposomal Drug Delivery System Enhances Mitoxantrone Antitumor Activity. Nat. Biotechnol. 1999, 17, 775–779. DOI: 10.1038/11710.
  • Liu, Z.; Cai, W.; He, L.; Nakayama, N.; Chen, K.; Sun, X.; Chen, X.; Dai, H. In Vivo Biodistribution and Highly Efficient Tumour Targeting of Carbon Nanotubes in Mice. Nature Nanotech. 2007, 2, 47–52. DOI: 10.1038/nnano.2006.170.
  • Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. Carbon Nanotubes in Biology and Medicine: In Vitro and in Vivo Detection, Imaging and Drug Delivery. Nano Res. 2009, 2, 85–120. DOI: 10.1007/s12274-009-9009-8.
  • Prato, M.; Kostarelos, K.; Bianco, A. Functionalized Carbon Nanotubes in Drug Design and Discovery. Acc. Chem. Res. 2008, 41, 60–68. DOI: 10.1021/ar700089b.
  • Pantarotto, D.; Partidos, C. D.; Hoebeke, J.; Brown, F.; Kramer, E.; Briand, J.-P.; Muller, S.; Prato, M.; Bianco, A. Immunization with Peptide-Functionalized Carbon Nanotubes Enhances Virus-Specific Neutralizing Antibody Responses. Chem. Biol. 2003, 10, 961–966. DOI: 10.1016/j.chembiol.2003.09.011.
  • Salvador-Morales, C.; Flahaut, E.; Sim, E.; Sloan, J.; Green, M.-L.-H.; Sim, R.-B. Complement Activation and Protein Adsorption by Carbon Nanotubes. Mol. Immun. 2006, 43, 193–201. DOI: 10.1016/j.molimm.2005.02.006.
  • Liu, G.-R.; Cheng, Y.; Dong, M.; Li, Z.-R. A Study on Self-Insertion of Peptides into Single-Walled Carbon Nanotubes Based on Molecular Dynamics Simulation. Int. J. Mod. Phys. C 2005, 16, 1239–1250. DOI: 10.1142/S0129183105007856.
  • Blasé, X.; Rubio, A.; Louie, S.-G.; Cohen, M.-L. Stability and Band Gap Constancy of Boron Nitride Nanotubes. Europhys. Lett. 1994, 28, 335–340. DOI: 10.1209/0295-5075/28/5/007.
  • Terao, T.; Zhi, C.; Bando, Y.; Mitome, M.; Tang, C.; Golberg, D. Alignment of Boron Nitride Nanotubes in Polymeric Composite Films for Thermal Conductivity Improvement. J. Phys. Chem. C 2010, 114, 4340–4344. DOI: 10.1021/jp911431f.
  • Ciofani, G.; Raffa, V.; Menciassi, A.; Dario, P. Preparation of Boron Nitride Nanotubes Aqueous Dispersions for Biological Applications. J. Nanosci. Nanotechnol. 2008, 8, 6223–6231. DOI: 10.1166/jnn.2008.339.
  • Ricotti, L.; Fujie, T.; Vazão, H.; Ciofani, G.; Marotta, R.; Brescia, R.; Filippeschi, C.; Corradini, I.; Matteoli, M.; Mattoli, V.; et al. Boron Nitride Nanotube-Mediated Stimulation of Cell Co-Culture on Micro-Engineered Hydrogels. PLoS One 2013, 8, e71707. DOI: 10.1371/journal.pone.0071707.
  • Ciofani, G.; Raffa, V.; Menciassi, A.; Cuschieri, A. Cytocompatibility, Interactions and Uptake of Polyethyleneimine Coated Boron Nitride Nanotubes by Living Cells: Confirmation of Their Potential for Biomedical Applications. Biotechnol. Bioeng. 2008, 101, 850–858. DOI: 10.1002/bit.21952.
  • Turcoa, S.-D.; Ciofanib, G.; Cappelloc, V.; Gemmic, M.; Cervellia, T.; Saponaroa, C.; Nitti, S.; Mazzolaib, B.; Bastaa, G.; Mattolib, V. Cytocompatibility Evaluation of Glycol-Chitosan Coated Boron Nitride Nanotubes in Human Endothelial Cells. Colloids Surf., B 2013, 111, 142–149. DOI: 10.1016/j.colsurfb.2013.05.031.
  • Ciofani, G.; Danti, S.; Nitti, S.; Mazzolai, B.; Mattoli, V.; Giorgi, M. Biocompatibility of Boron Nitride Nanotubes: An up-Date of in Vivo Toxicological Investigation. Int. J. Pharm. 2013, 444, 85–88. DOI: 10.1016/j.ijpharm.2013.01.037.
  • Chen, X.; Wu, P.; Rousseas, M.; Okawa, D.; Gartner, Z.; Zettl, A.; Bertozzi, C.-R. Boron Nitride Nanotubes Are Noncytotoxic and Can Be Functionalized for Interaction with Proteins and Cells. J. Am. Chem. Soc. 2009, 131, 890–891. DOI: 10.1021/ja807334b.
  • Ciofani, G.; Raffa, V.; Menciassi, A.; Cuschieri, A. Boron Nitride Nanotubes: An Innovative Tool for Nanomedicine. Nano Today 2009, 4, 8–10. DOI: 10.1016/j.nantod.2008.09.001.
  • Jong, W.-H.-E.; Brom, P.-J.-A. Drug Delivery and Nanoparticles: Applications and Hazards. Int. J. Nanomed. 2008, 3, 133–149. DOI: 102147/IJN.S596.
  • Hughes, G.-A. Nanostructure-Mediated Drug Delivery. Nanomedicine 2005, 1, 22–30. DOI: 10.1016/j.nano.2004.11.009.
  • Khalifi, M.-E.; Duverger, E.; Gharbi, T.; Boulahdour, H.; Picaud, F. Theoretical Demonstration of the Potentiality of Boron Nitride Nanotubes to Encapsulate Anticancer Molecule. Phys. Chem. Chem. Phys. 2015, 17, 30057–30064. DOI: 10.1039/C5CP05148G.
  • Khalifi, M-E-l.; Duverger, E.; Gharbi, T.; Boulahdour, H.; Picaud, F. Theoretical Use of Boron Nitride Nanotubes as a Perfect Container for Anticancer Molecules. Anal. Methods 2016, 8, 1367–1372. DOI: 10.1039/C5AY02822A.
  • Xu, H.; Wang, Q.; Fan, G.; Chu, X. Theoretical Study of Boron Nitride Nanotubes as Drug Delivery Vehicles of Some Anticancer Drugs. Theor. Chem. Acc. 2018, 137, 104. DOI: 10.1007/s00214-018-2284-2.
  • Mejri, A.; Vardanega, D.; Tangour, B.; Gharbi, T.; Picaud, F. Encapsulation into Carbon Nanotubes and Release of Anticancer Cisplatin Drug Molecule. J. Phys. Chem. B 2015, 119, 604–611. DOI: 10.1021/jp5102384.
  • Mlaouah, M.; Tangour, B.; El Khalifi, M.; Gharbi, T.; Picaud, F. The Encapsulation of the Gemcitabine Anticancer Drug into Grapheme Nest: A Theoretical Study. J. Mol. Model. 2018, 24, 102 DOI:10.1007/s00894-018-3627-6.
  • Khatti, Z.; Hashemianzadeh, S.-M. Boron Nitride Nanotube as a Delivery System for Platinum Drugs: Drug Encapsulation and Diffusion Coefficient Prediction. Eur. J. Pharm. Sci. 2016, 88, 291–297. DOI: 10.1016/j.ejps.2016.04.011.
  • Becke, A.-D. Density Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. DOI: 10.1063/1.464913.
  • Frisch, M.-J.; Trucks, G.-W.; Schlegel, H.-B.; Scuseria, G.-E.; Robb, M.-A.; Cheeseman, J.-R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.-A., et al. Gaussian, Inc.; Wallingford, CT, 2009.
  • Lee, C.; Yang, W.; Parr, R.-G. Development of the Colle-Salvetti Correlation Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. DOI: 10.1103/PhysRevB.37.785.
  • Beheshtian, J.; Ahmadi Peyghan, A.; Noei, M. Sensing Behavior of Al and Si Doped BC3 Graphenes to Formaldehyde. Sens. Actuators. B: Chem. 2013, 181, 829–834. DOI: 10.1016/j.snb.2013.02.086.
  • Rastegar, S.-F.; Ahmadi Peyghan, A.; Hadipour, N.-L. Response of Si- and Al-Doped Graphenes toward HCN: A Computational Study. Appl. Surf. Sci. 2013, 265, 412–417. DOI: 10.1016/j.apsusc.2012.11.021.
  • Bahrami, A.; Yourdkhani, S.; Esrafili, M.-D.; Hadipour, N.-L. A DFT Study on Doping Assisted Changing of B80 Electronic Structure: Promising Candidates for NH3 Sensor. Sens. Actuators, B 2014, 191, 457–463. DOI: 10.1016/j.snb.2013.09.074.
  • Shahab, S.; Sheikhi, M.; Filippovich, L.; Dikusar Anatol’evich, E.; Yahyaei, H. Quantum Chemical Modeling of New Derivatives of (E,E)-Azomethines: Synthesis, Spectroscopic (FT-IR, UV/Vis, Polarization) and Thermophysical Investigations. J. Mol. Struct. 2017, 1137, 335–348. DOI: 10.1016/j.molstruc.2017.02.056.
  • Shahab, S.; Filippovich, L.; Sheikhi, M.; Kumar, R.; Dikusar, E.; Yahyaei, H.; Muravsky, A. Polarization, Excited States, Trans-Cis Properties and Anisotropy of Thermal and Electrical Conductivity of the 4-(Phenyldiazenyl)Aniline in PVA Matrix. J. Mol. Struct. 2017, 1141, 703–709. DOI: 10.1016/j.molstruc.2017.04.014.
  • Shahab, S.; Filippovich, L.; Sheikhi, M.; Yahyaei, H.; Aharodnikova, M.; Kumar, R.; Khaleghian, M. Spectroscopic (Polarization FT-IR Excited State UV/Vis and 1H NMR) and Thermophysical Investigations of New Synthesized Azo Dye and Its Application in Polarizing Film. Am. J. Mater. Synth. Process. 2017, 5, 17–23. DOI: 10.11648/j.ajmsp.20170202.11.
  • Frisch, A.; Nielson, A.-B.; Holder, A.-J. GAUSSVIEW User Manual; Gaussian Inc.: Pittsburgh, PA, 2000.
  • Shiri, L.; Sheikh, D.; Faraji, A.-R.; Sheikhi, M.; Seyed Katouli, S.-A. Selective Oxidation of Oximes to Their Corresponding Carbonyl Compounds by sym-Collidinium Chlorochromate (S-COCC) as an Efficient and Novel Oxidizing Agent and Theoretical Study of NMR Shielding Tensors and Thermochemical Parameters. Lett. Org. Chem. 2014, 11, 18–28. DOI: 10.2174/157017861101140113155817.
  • Monajjemi, M.; Sheikhi, M.; Mahmodi Hashemi, M.; Molaamin, F.; Zhiani, R. NMR and NBO Calculation of Benzimidazoles and Pyrimidines: Nano Physical Parameters Investigation. Inter. J. Phys. Sci. 2012, 7, 2010–2031. DOI: 10.5897/IJPS11.507.
  • Glendening, E.-D.; Landis, C.-R.; Weinhold, F. NBO 6.0: Natural Bond Orbital Analysis Program. J. Comput. Chem. 2013, 34, 1429–1437. DOI: 10.1002/jcc.23266.
  • Shayan, K.; Nowroozi, A. Boron Nitride Nanotubes for Delivery of 5-Fluorouracil as Anticancer Drug: A Theoretical Study. Appl. Surf. Sci. 2018, 428, 500–513. DOI: 10.1016/j.apsusc.2017.09.121.
  • D’Souza, F.; Sandanayaka, A.-S.; Ito, O. SWNT-Based Supramolecular Nanoarchitectures with Photosensitizing Donor and Acceptor Molecules. J. Phys. Chem. Lett. 2010, 1, 2586–2593. DOI: 10.1021/jz1009407.
  • Liu, J.-N.; Chen, Z.-R.; Yuan, S.-F. Study on the Prediction of Visible Absorption Maxima of Azobenzene Compounds. J. Zhejiang Univ. Sci. 2005, 6, 584–589. DOI: 10.1631/jzus.2005.B0584.
  • Soltani, A.-R.; Baei, M.-T.; Mirarab, M.; Sheikhi, M.; Tazikeh Lemeski, E. The Electronic and Structural Properties of BN and BP Nano-Cages Interacting with OCN-: A DFT Study. J. Phys. Chem. Solids 2014, 75, 1099–1105. DOI: 10.1016/j.jpcs.2014.05.005.
  • Shahab, S.; Sheikhi, M.; Filippovich, L.; Kumar, R.; Dikusar, E.; Yahyaei, H.; Khaleghian, M. Synthesis, Geometry Optimization, Spectroscopic Investigations (UV/Vis, Excited States, FT-IR) and Application of New Azomethine Dyes. J. Mol. Struct. 2017, 1148, 134–149. DOI: 10.1016/j.molstruc.2017.07.036.
  • Wehrmann, F.; Albrecht, J.; Gedat, E.; Kubas, G.-J.; Eckert, J.; Limbach, H.-H.; Buntkowsky, G. Hydrogen Deuterium Isotope Effect on Exchange Rates in η2 Bond Transition Metal Dihydrogen Complexes Revealed by 2H Solid State NMR Spectroscopy. J. Phys. Chem. A 2002, 106, 2855–2868. DOI: 10.1021/jp012087w.
  • Shahab, S.; Alhosseini Almodarresiyeh, H.; Kumar, R.; Darroudi, M. A Study of Molecular Structure, UV, IR, and 1H NMR Spectra of a New Dichroic Dye on the Basis of Quinoline Derivative. J. Mol. Struct. 2015, 1088, 105–110. DOI: 10.1016/j.molstruc.2015.01.047.
  • Soltani, A.; Peyghan, A.-A.; Bagheri, Z. H2O2 Adsorption on the BN and SiC Nanotubes: A DFT Study. Physica E 2013, 48, 176–180. DOI: 10.1016/j.physe.2013.01.007.
  • Bader, R.-F. Atoms in Molecules: A Quantum Theory, International Series of Monographs on Chemistry; Oxford University Press: Oxford, 1994; Vol. 22.
  • Henkelman, G.; Arnaldsson, A.; Jónsson, H. A Fast and Robust Algorithm for Bader Decomposition of Charge Density. Comp. Mater. Sci. 2006, 36, 354–360. DOI: 10.1016/j.commatsci.2005.04.010.
  • Popelier, P.-L. Atoms in Molecules: An Introduction; Prentice Hall: London, 2000.
  • Balamurugan, K.; Baskar, P.; Mahesh Kumar, R.; Das, S.; Subramanian, V. Interaction of Carbon Nanotube with Ethylene Glycol–Water Binary Mixture: A Molecular Dynamics and Density Functional Theory Investigation. J. Phys. Chem. C 2012, 116, 4365–4373. DOI: 10.1021/jp206882f.
  • Laaksonen, A.; Kusalik, P.-G.; Svishchev, I.-M. Three-Dimensional Structure in Water-Methanol Mixtures. J. Phys. Chem. A 1997, 101, 5910–5918. DOI: 10.1021/jp970673c.
  • Ciofani, G.; Raffa, V.; Menciassi, A.; Cuschieri, A. Folate Functionalized Boron Nitride Nanotubes and Their Selective Uptake by Glioblastoma Multiforme Cells: Implications for Their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy. Nanoscale Res. Lett. 2009, 4, 113–121. DOI: 10.1007/s11671-008-9210-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.