207
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Theoretical calculations of the chemical shifts of cyclo[n]phosphazenes for n = 2, 3, 4 and 5 (X2PN)n with X = CH3, F, Cl and Br: the effect of relativistic corrections

Pages 307-313 | Received 15 Aug 2019, Accepted 31 Oct 2019, Published online: 11 Nov 2019

References

  • Jaeger, R. De.; Gleria, M., Eds. Applicative Aspects of Cyclophosphazenes; Nova Science Publishers: New York, 2004.
  • Jaeger, R. De.; Gleria, M., Eds. Phosphazenes: A Worldwide Insight; Nova Science Publishers: New York, 2011.
  • Fruchier, A.; Vicente, V.; Alkorta, I.; Elguero, J. Theoretical Study of 31P, 31P Coupling Constants in Cyclotriphosphazenes. Magn. Reson. Chem. 2005, 43, 471–474. DOI: 10.1002/mrc.1569.
  • Naik, K. P. K.; Muralidharan, K.; Shreeve, J. M. Unexpected Reactions of Dicarbaphos-Phazenes with Fluoride and N-Methyl Imidazole. Inorg. Chim. Acta 2011, 372, 400–402. DOI: 10.1016/j.ica.2011.02.032.
  • Uslu, A.; Yeşilot, S. Chiral Configurations in Cyclophosphazene Chemistry. Coord. Chem. Rev. 2015, 291, 28–67. DOI: 10.1016/j.ccr.2015.01.012.
  • Abbas, Y.; Zuhra, Z.; Basharat, M.; Qiu, M.; Wu, Z.; Wu, D.; Ali, S. Morphology Control of Novel Cross-Linked Ferrocenedimethanol Derivative Cyclophosphazenes: From Microspheres to Nanotubes and Their Enhanced Physicochemical Performances. J. Phys. Chem. B 2019, 123, 4148–4156. DOI: 10.1021/acs.jpcb.9b03405.
  • Mayer-Gall, T.; Plohl, D.; Derksen, L.; Lauer, D.; Neldner, P.; Ali, W.; Fuchs, S.; Gutmann, J. S.; Opwis, K. A Green Water-Soluble Cyclophosphazene as a Flame Retardant Finish for Textiles. Molecules 2019, 24, 3100. DOI: 10.3390/molecules24173100.
  • Özcan, E.; Tümay, S. O.; Keşan, G.; Yeşilot, S.; Çoşut, B. The Novel Anthracene Decorated Dendrimeric Cyclophosphazenes for Highly Selective Sensing of 2,4,6-Trinitrotoluene (TNT). Spectrochim. Acta Part A 2019, 220, 117115. DOI: 10.1016/j.saa.2019.05.020.
  • Uslu, A.; Tümay, S. O.; Şenocak, A.; Yuksel, F.; Özcan, E.; Yeşilot, S. Imidazole/Benzimidazole-Modified Cyclotriphosphazenes as Highly Selective Fluorescent Probes for Cu2+: Synthesis, Configurational Isomers, and Crystal Structures. Dalton Trans. 2017, 46, 9140–9156. DOI: 10.1039/C7DT01134B.
  • Binici, A.; Okumuş, A.; Elmas, G.; Kılıç, Z.; Ramazanoğlu, N.; Açık, L.; Şimşek, H.; Çağdaş Tunalı, B.; Türk, M.; Güzel, R.; Hökelek, T. Phosphorus–Nitrogen Compounds. Part 42. The Comparative Syntheses of 2-Cis-4-Ansa(N/O) and Spiro(N/O) Cyclotetraphosphazene Derivatives: Spectroscopic and Crystallographic Characterization, Antituberculosis and Cytotoxic Activity Studies. New J. Chem. 2019, 43, 6856–6873. DOI: 10.1039/C9NJ00577C.
  • Allcock, H. R.; Mang, M. N.; Riding, G. H.; Whittle, R. R. Synthesis and Structure of Transition-Metal-Bound Phosphazenes Derived from Phosphazene Anions. Organometallics 1986, 5, 2244–2250. DOI: 10.1021/om00142a012.
  • Chhandresekar, V.; Justin Thomas, K. R. Coordination and Organometallic Chemistry of Cyclophosphazenes and Polyphosphazenes. Appl. Organomet. Chem. 1993, 7, 1–31. DOI: 10.1002/aoc.590070102.
  • Chandrasekhar, V.; Nagendran, S.; Thangavelu, G.; Andavan, S.; Bansal, S.; Krishnan, V. Organostannoxanes and Cyclophosphazenes as Scaffolds for Multi-Ferrocene Assemblies. Phosphorus, Sulfur and Silicon 2001, 168, 227–231. DOI: 10.1080/10426500108546558.
  • Chandrasekhar, V.; Thilagar, P.; Pandian, B. M. Cyclophosphazene-Based Multi-Site Coordination Ligands. Coord. Chem. Rev. 2007, 251, 1045–1074. DOI: 10.1016/j.ccr.2006.07.005.
  • Simanova, S. A.; Kuznetsova, T. V.; Demidov, V. N.; Aleksandrova, E. A.; Diefenbach, U. Synthesis and Molecular Structure of Platinum(II) Complexes with Cyclotriphosphazenes Containing Pyridylalkylamino and Pyridylmethoxy Groups. Russ. J. Gen. Chem. 2007, 77, 1874–1879. DOI: 10.1134/S1070363207110059.
  • Díaz, C.; Valenzuela, M. L.; Zúñiga, L.; O’Dwyer, C. Organometallic Derivatives of Cyclotriphosphazene as Precursors of Nanostructured Metallic Materials: A New Solid State Method. J. Inorg. Organomet. Polym. 2009, 19, 507–520. DOI: 10.1007/s10904-009-9286-4.
  • Gall, M.; Breza, M. QTAIM Study of Transition Metal Complexes with Cyclophosphazene-Based Multisite Ligands I: Zinc(III) and Nickel(II) Complexes. Polyhedron 2009, 28, 521–524. DOI: 10.1016/j.poly.2008.11.043.
  • Chandrasekar, V.; Narayanan, R. S. Pyridyloxy Cyclophosphazenes and Carbophosphazenes: Inorganic Ring Supported Coordination Platforms. Chimia 2013, 67, 64–70. DOI: 10.2533/chimia.2013.64.
  • Pyykkö, P.; Görling, A.; Rösch, N. A Transparent Interpretation of the Relativistic Contribution to the NMR ‘Heavy Atom Chemical Shift. Mol. Phys. 1987, 61, 195–205. DOI: 10.1080/00268978700101071.
  • Ditchfield, R.; Hehre, W. J.; Pople, J. A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys 1971, 54, 724–728. DOI: 10.1063/1.1674902.
  • Frisch, M. J.; Pople, J. A.; Binkley, J. S. Self‐Consistent Molecular Orbital Methods 25. Supplementary Functions for Gaussian Basis Sets. J. Chem. Phys. 1984, 80, 3265–3269. DOI: 10.1063/1.447079.
  • Ditchfield, R. Self-Consistent Perturbation Theory of Diamagnetism. I. A Gauge-Invariant LCAO (Linear Combination of Atomic Orbitals) Method for NMR Chemical Shifts. Mol. Phys. 1974, 27, 789–807. DOI: 10.1080/00268977400100711.
  • London, F. Quantum Theory of Interatomic Currents in Aromatic Compounds. J. Phys. Radium. 1937, 8, 397–409. DOI: 10.1051/jphysrad:01937008010039700.
  • Schreckenbach, G.; Ziegler, T. Calculation of NMR Shielding Tensors Using Gauge-Including Atomic Orbitals and Modern Density Functional Theory. J. Phys. Chem. 1995, 99, 606–611. DOI: 10.1021/j100002a024.
  • Alkorta, I.; Elguero, J. Ab Initio (GIAO) Calculations of Absolute Nuclear Shieldings for Representative Compounds Containing (1(2))H, (6(7))Li, B-11, C-13, (14(15))N, O-17, F-19, Si-29, P-31, S-33, and Cl-35 Nuclei. Struct. Chem. 1998, 9, 187–202. DOI: 10.1023/A:1022419030317.
  • Alkorta, I.; Elguero, J. GIAO Calculations of Chemical Shifts in Heterocyclic Compounds. Struct. Chem. 2003, 14, 377–389. DOI: 10.1023/A:1024402027760.
  • Alkorta, I.; Elguero, J. A GIAO/DFT Study of H-1, C-13 and N-15 Shieldings in Amines and Its Relevance in Conformational Analysis. Magn. Reson. Chem. 2004, 42, 955–961. DOI: 10.1002/mrc.1460.
  • Sousa, J. L.; Silva, A. M. S.; Alkorta, I.; Elguero, J. Assignment of 1H and 13C NMR Data for Three Pairs of Diastereomers of 4′‐X Benzo[1,3]Cyclopropa[1,2‐b]Chromene‐4,5‐Diones (X = H, OCH3, and Cl). Magn. Reson. Chem. 2019, 57, 512–521. DOI: 10.1002/mrc.4892.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford CT, 2016.
  • Van Lenthe, E.; Baerends, E. J. Optimized Slater-Type Basis Sets for the Elements 1-118. J. Comput. Chem. 2003, 24, 1142–1156. DOI: 10.1002/jcc.10255.
  • Vosko, S. H.; Wilk, L.; Nusair, M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. Can. J. Phys. 1980, 58, 1200–1211. DOI: 10.1139/p80-159.
  • Becke, A. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100. DOI: 10.1103/PhysRevA.38.3098.
  • Perdew, J. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas. Phys. Rev. B 1986, 33, 8822. DOI: 10.1103/PhysRevB.33.8822.
  • van Lenthe, E.; Baerends, E. J.; Snijders, J. G. Relativistic Regular Two-Components Hamiltonians. J. Chem. Phys. 1993, 99, 4597–4610. DOI: 10.1063/1.466059.
  • Autschbach, J.; Zheng, S. Relativistic Computations of NMR Parameters from First Principles: Theory and Applications. Ann. Reps. NMR Spectrosc. 2009, 67, 1–95. DOI: 10.1016/S0066-4103(09)06701-5.
  • Autschbach, J. Relativistic Calculations of Magnetic Resonance Parameters: Backgrounbd and Some Recent Developments. Phil. Trans. R Soc. A 2014, 372, 20120489. DOI: 10.1098/rsta.2012.0489.
  • Te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C. S.; van Gisbergen, J. A.; Snijders, J. G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931–967. DOI: 10.1002/jcc.1056.
  • Li, L.; Lei, M.; Xie, Y.; Schaefer, H. F.; Chen, B.; Hoffmann, R. Stabilizing a Different Cyclooctatetraene Stereoisomer. Proc. Natl. Acad. Sci. USA. 2017, 114, 9803–9808. DOI: 10.1073/pnas.1709586114.
  • Castro, C.; Karney, W. L.; McShane, C. M.; Pemberton, R. P. [10]Annulene: Bond Shifting and Conformational Mechanisms for Automerization. J. Org. Chem. 2006, 71, 3001–3006. DOI: 10.1021/jo0521450.
  • Luaña, V.; Martin Pendás, A.; Costales, A.; Carriedo, G. A.; García-Alonso, F. J. Topological Analysis of Chemical Bonding in Cyclophosphazenes. J. Phys. Chem. A 2001, 105, 5280–5291. DOI: 10.1021/jp0044577.
  • Jemmis, E. D.; Kiran, B. Aromaticity in X3Y3H6 (X = B, Al, Ga; Y = N, P, as), X3Z3H3 (Z = O, S, Se), and Phosphazenes. Theoretical Study of the Structures, Energetics, and Magnetic Properties. Inorg. Chem. 1998, 37, 2110–2116. DOI: 10.1021/ic970737y.
  • Torres-Vega, J. J.; Vásquez-Espinal, A.; Caballero, J.; Valenzuela, M. L.; Alvarez-Thon, L.; Osorio, E.; Tiznado, W. Minimizing the Risk of Reporting False Aromaticity and Antiaromaticity in Inorganic Heterocycles following Magnetic Criteria. Inorg. Chem. 2014, 53, 3579–3585. DOI: 10.1021/ic4030684.
  • Maturana, R. G.; Valenzuela, M. L.; Schott, E.; Rojas-Poblete, M. Bonding and Optical Properties of Spirocyclic-Phosphazene Derivatives. A DFT Approach. Phys. Chem. Chem. Phys. 2017, 19, 31479–31486. DOI: 10.1039/C7CP06064E.
  • Chaplin, A. B.; Harrison, J. A.; Dyson, P. J. Revisiting the Electronic Structure of Phosphazenes. Inorg. Chem. 2005, 44, 8407–8417. DOI: 10.1021/ic0511266.
  • Kapicka, L.; Kubácek, P.; Holub, P. Bonding and Aromaticity of Cyclic Phosphazenes Viewed as Interaction of Dnh Fragments. J. Mol. Struct. THEOCHEM 2007, 820, 148–158. DOI: 10.1016/j.theochem.2007.06.022.
  • Silva, A. M. S.; Sousa, R. M. S.; Jimeno, M. L.; Blanco, F.; Alkorta, I.; Elguero, J. Experimental Measurements and Theoretical Calculations of the Chemical Shifts and Coupling Constants of Three Azines (Benzalazine, Acetophenoneazine and Cinnamaldazine). Magn. Reson. Chem. 2008, 46, 859–864. DOI: 10.1002/mrc.2272.
  • Blanco, F.; Alkorta, I.; Elguero, J. Statistical Analysis of 13C and 15N NMR Chemical Shifts from GIAO/B3LYP/6-311++G** Calculated Absolute Shieldings. Magn. Reson. Chem. 2007, 45, 797–800. DOI: 10.1002/mrc.2053.
  • Alkorta, I.; Elguero, J.; Fruchier, A. Theoretical Study of Some λ5-Phosphinines and Their NMR Spectra. Magn. Reson. Chem. 2019, 57, 975–981. 10.1002/mrc.4926
  • Thomas, B.; Grossmann, G. The Nuclear Magnetic Resonance Spectroscopy of 15N-Labelled Cyclophosphazenes. Russ. Chem. Rev. 1986, 55, 622–636. DOI: 10.1070/RC1986v055n07ABEH003212.
  • Vicente, V. Synthèse et étude RMN de cyclotriphosphazènes à substituants hétéroaroma-tiques. PhD Thesis, Montpellier, France, 2002.
  • Kapicka, L.; Dastych, D.; Richterová, V.; Alberti, M.; Kubácek, P. Analysis and Calculation of the 31P and 19F NMR Spectra of Hexafluorocyclotriphosphazene. Magn. Reson. Chem. 2005, 43, 294. DOI: 10.1002/mrc.1549.
  • Krishnamurthy, S. S.; Woods, M. Nuclear Magnetic Resonance of Cyclophosphazenes. Annu. Rep. NMR Spectrosc. 1987, 19, 175. references therein. DOI: 10.1016/S0066-4103(08)60247-1.
  • Free, S. M.; Wilson, J. W. A Mathematical Contribution to Structure-Activity Studies. J. Med. Chem. 1964, 7, 395–399. DOI: 10.1021/jm00334a001.
  • Kubinyi, H. Free Wilson Analysis. Theory, Applications and Its Relationship to Hansch Analysis. Quant. Struct-Act. Relat. 1988, 7, 121–133. DOI: 10.1002/qsar.19880070303.
  • Abboud, J. L. M.; Cabildo, P.; Cañada, T.; Catalán, J.; Claramunt, R. M.; de Paz, J. L. G.; Elguero, J.; Homan, H.; Notario, R.; Toiron, C.; Yranzo, G. I. Basicity of C-Substituted Pyrazoles in the Gas Phase: An Experimental (ICR) and Theoretical Study. J. Org. Chem. 1992, 57, 3938–3946. DOI: 10.1021/jo00040a040.
  • Yáñez, M.; Sanz, P.; Mó, O.; Alkorta, I.; Elguero, J. Beryllium Bonds, Do They Exist?. J. Chem. Theory Comput. 2009, 5, 2763–2771. DOI: 10.1021/ct900364y.
  • Alkorta, I.; Elguero, J. A LFER Analysis of the Singlet-Triplet Gap in a Series of Sixty-Six Carbenes. Chem. Phys. Lett 2018, 691, 33–36. DOI: 10.1016/j.cplett.2017.10.059.
  • Casella, G.; Bagno, A.; Komorovsky, S.; Repisky, M.; Saielli, G. Four-Component Relativistic DFT Calculations of 13C Chemical Shifts of Halogenated Natural Substances. Chem. Eur. J. 2015, 21, 18834–18840. DOI: 10.1002/chem.201502252.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.