78
Views
0
CrossRef citations to date
0
Altmetric
Articles

Synthesis, characterization, and electrochemistry of diiron ethane-1,2-dithiolate complexes with monosubstituted ethyldiphenylphosphine or dicyclohexylphenylphosphine

ORCID Icon, , , &
Pages 747-755 | Received 26 Dec 2019, Accepted 15 Mar 2020, Published online: 12 May 2020

References

  • Camara, J. M.; Rauchfuss, T. B. Combining Acid–Base, Redox and Substrate Binding Functionalities to Give a Complete Model for the [FeFe]-Hydrogenase. Nature Chem. 2012, 4, 26–30.
  • Han, Z.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Robust Photogeneration of H2 in Water Using Semiconductor Nanocrystals and a Nickel Catalyst. Science 2012, 338, 1321–1324.
  • Han, Z.; Shen, L.; Brennessel, W. W.; Holland, P. L.; Eisenberg, R. Nickel Pyridinethiolate Complexes as Catalysts for the Light-Driven Production of Hydrogen from Aqueous Solutions in Noble-Metal-Free Systems. J. Am. Chem. Soc. 2013, 135, 14659–14669.
  • Han, Z.; McNamara, W. R.; Eum, M. S.; Holland, P. L.; Eisenberg, R. A Nickel Thiolate Catalyst for the Long-Lived Photocatalytic Production of Hydrogen in a Noble-Metal-Free System. Angew. Chem. Int. Ed. 2012, 51, 1667–1670.
  • Cammack, R. Hydrogenase Sophistication. Nature 1999, 397, 214–215. DOI: 10.1038/16601.
  • Frey, M. Hydrogenases: Hydrogen-Activating Enzymes. ChemBioChem. 2002, 3, 153–160. CBIC153 > 3.0.CO;2-B. DOI: 10.1002/1439-7633(20020301)3:2/3 < 153::AID-.
  • Gloaguen, F.; Rauchfuss, T. B. Small Molecule Mimics of Hydrogenases: Hydrides and Redox. Chem. Rev. 2009, 38, 100–108. DOI: 10.1039/B801796B.
  • Tard, C.; Pickett, C. J. Structural and Functional Analogues of the Active Sites of the [Fe]-, [NiFe]-, and [FeFe]-Hydrogenases. Chem. Rev. 2009, 109, 2245–2274.
  • Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E. Hydrogenases. Chem. Rev. 2014, 114, 4081–4148. DOI: 10.1021/cr4005814.
  • Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. X-Ray Crystal Structure of the Fe-Only Hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom Resolution. Science 1998, 282, 1853–1857.
  • Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C. Desulfovibrio Desulfuricans Iron Hydrogenase: The Structure Shows Unusual Coordination to an Active Site Fe Binuclear Center. Structure 1999, 7, 13–23. DOI: 10.1016/S0969-2126(99)80005-7.
  • Lyon, E. J.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Y. Carbon Monoxide and Cyanide Ligands in a Classical Organometallic Complex Model for Fe-Only Hydrogenase. Angew. Chem. Int. Ed. 1999, 38, 3178–3180. DOI: 10.1002/(SICI)1521-3773(19991102)38:21 < 3178::AID-ANIE3178 > 3.0.CO;2-4.
  • Lawrence, J. D.; Li, H.; Rauchfuss, T. B.; Bénard, M.; Rohmer, M. M. Diiron Azadithiolates as Models for the Iron-Only Hydrogenase Active Site: Synthesis, Structure, and Stereoelectronics. Angew. Chem. Int. Ed. 2001, 40, 1768–1771. DOI: 10.1002/1521-3773(20010504)40:9 < 1768::AID-ANIE17680 > 3.0.CO;2-E.
  • Fan, H. J.; Hall, M. B. A Capable Bridging Ligand for Fe-Only Hydrogenase: Density Functional Calculations of a Low-Energy Route for Heterolytic Cleavage and Formation of Dihydrogen. J. Am. Chem. Soc. 2001, 123, 3828–3829. DOI: 10.1021/ja004120i.
  • Schmidt, M.; Contakes, S. M.; Rauchfuss, T. B. First Generation Analogues of the Binuclear Site in the Fe-Only Hydrogenases: Fe2(μ-SR)2(CO)4(CN)22‒. J. Am. Chem. Soc. 1999, 121, 9736–9737.
  • Mejia-Rodriguez, R.; Chong, D.; Reibenspies, J. H.; Soriaga, M. P.; Darensbourg, M. Y. The Hydrophilic Phosphatriazaadamantane Ligand in the Development of H2 Production Electrocatalysts: Iron Hydrogenase Model Complexes. J. Am. Chem. Soc. 2004, 126, 12004–12014.
  • Ghosh, S.; Rahaman, A.; Holt, K. B.; Nordlander, E.; Richmond, M. G.; Kabir, S. E.; Hogarth, G. Hydrogenase Biomimetics with Redox-Active Ligands: Electrocatalytic Proton Reduction by [Fe2(CO)4(κ2-Diamine)(μ-Edt)] (Diamine = 2,2’-Bipy,1,10-Phen). Polyhedron 2016, 116, 127–135. DOI: 10.1016/j.poly.2016.05.015.
  • Capon, J.-F.; El Hassnaoui, S.; Gloaguen, F.; Schollhammer, P.; Talarmin, J. N- Heterocyclic Carbene Ligands as Cyanide Mimics in Diiron Models of the All- Iron Hydrogenase Active Site. Organometallics 2005, 24, 2020–2022. DOI: 10.1021/om049132h.
  • Rauchfuss, T. B. Diiron Azadithiolates as Models for the [FeFe]-Hydrogenase Active Site and Paradigm for the Role of the Second Coordination Sphere. Acc. Chem. Res. 2015, 48, 2107–2116. DOI: 10.1021/acs.accounts.5b00177.
  • Razavet, M.; Davies, S. C.; Hughes, D. L.; Pickett, C. J. {2Fe3S} Clusters Related to the Di-Iron Sub-Site of the H-Centre of All-Iron Hydrogenases. Chem. Commun. 2001, 847–848.
  • Li, Y.; Rauchfuss, T. B. Synthesis of Diiron(I) Dithiolato Carbonyl Complexes. Chem. Rev. 2016, 116, 7043–7077. DOI: 10.1021/acs.chemrev.5b00669.
  • Gloaguen, F.; Lawrence, J. D.; Schmidt, M.; Wilson, S. R.; Rauchfuss, T. B. Synthetic and Structural Studies on [Fe2(SR)2(CN)x(CO)6-x]x- as Active Site Models for Fe-Only Hydrogenases. J. Am. Chem. Soc. 2001, 123, 12518–12527. DOI: 10.1021/ja016071v.
  • Zhao, X.; Georgakaki, I. P.; Miller, M. L.; Yarbrough, J. C.; Darensbourg, M. Y. H/D Exchange Reactions in Dinuclear Iron Thiolates as Activity Assay Models of Fe-H2ase. J. Am. Chem. Soc. 2001, 123, 9710–9711.
  • Yu, X.; Pang, M.; Zhang, S.; Hu, X.; Tung, C. H.; Wang, W. Terminal Thiolate- Dominated H/D Exchanges and H2 Release: Diiron Thiol − Hydride. J. Am. Chem. Soc. 2018, 140, 11454–11463. DOI: 10.1021/jacs.8b06996.
  • Ghosh, S.; Hollingsworth, N.; Warren, M.; Hrovat, D. A.; Richmond, M. G.; Hogarth, G. Hydrogenase Biomimics Containing Redox-Active Ligands: Fe2(CO)4(μ-Edt)(κ2-Bpcd) with Electronacceptor 4,5-Bis(Diphenylphosphino)-4- Cyclopenten-1,3-Dione (Bpcd) as a Potential [Fe4–S4]H Surrogate. Dalton Trans. 2019, 48, 6051–6060. DOI: 10.1039/C8DT04906H.
  • Gao, W.; Ekström, J.; Liu, J.; Chen, C.; Eriksson, L.; Weng, L.; Åkermark, B.; Sun, L. Binuclear Iron-Sulfur Complexes with Bidentate Phosphine Ligands as Active Site Models of Fe-Hydrogenase and Their Catalytic Proton Reduction. Inorg. Chem. 2007, 46, 1981–1991. DOI: 10.1021/ic0610278.
  • Ghosh, S.; Hogarth, G.; Hollingsworth, N.; Holt, K. B.; Richard, I.; Richmond, M. G.; Sanchez, B. E.; Unwin, D. Models of the Iron-Only Hydrogenase: A Comparison of Chelate and Bridge Isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-Pdt) as Proton-Reduction Catalysts. Dalton Trans. 2013, 42, 6775–6792. DOI: 10.1039/c3dt50147g.
  • Unwin, D. G.; Ghosh, S.; Ridley, F.; Richmond, M. G.; Holt, K. B.; Hogarth, G. Models of the Iron-Only Hydrogenase Enzyme: Structure, Electrochemistry and Catalytic Activity of Fe2(CO)3(μ-Dithiolate)(μ,κ1,κ2-Triphos). Dalton Trans. 2019, 48, 6174–6190.
  • Zhao, P. H.; Liu, S. N.; Liu, Y. F.; Liu, Y. Q. Synthesis, Characterization, and Crystal Structure of Tertiary Phosphine-Substituted Diiron Propanedithiolate Complexes. J. Clust. Sci. 2014, 25, 1331–1340. 0711-7. DOI: 10.1007/s10876-014-.
  • Winter, A.; Zsolnai, L.; Huttner, G. Dinuclear and Trinuclear Carbonyliron Complexes Containing 1,2- and 1,3-Dithiolato Bridging Ligands. Z. Naturforsch. 1982, 37, 1430–1436. DOI: 10.1002/chin.198308278.
  • Zhao, P. H.; Li, X. H.; Liu, Y. F.; Liu, Y. Q. Facile Synthesis, X-Ray Analysis, and Spectroscopic Studies of Di-Iron Propanedithiolate Complexes with Tris(Aromatic) Phosphine Ligands. J. Coord. Chem. 2014, 67, 766–778. DOI: 10.1080/00958972.2014.903329.
  • Chen, F. Y.; He, J.; Yu, X. Y.; Wang, Z.; Mu, C.; Liu, X. F.; Li, Y. L.; Jiang, Z. Q.; Wu, H. K. Electrocatalytic Properties of Diiron Ethanedithiolate Complexes Containing Benzoate Ester. Appl Organometal Chem 2018, 32, e4549. DOI: 10.1002/aoc.4549.
  • Wang, Z.; He, J.; Lü, S.; Jiang, W. D.; Wu, Y.; Jiang, J.; Xie, Y.; Mu, C.; Li, A.; Li, Y. L.; Li, Q. L. Monophosphine‐Substituted Diiron Azadithiolate Complexes: New Syntheses, Characterization and Electrochemical Properties. Appl. Organomet. Chem. 2019, 33, e5184. DOI: 10.1002/aoc.5184..
  • Lin, H. M.; Li, J. R.; Mu, C.; Li, A.; Liu, X. F.; Zhao, P. H.; Li, Y. L.; Jiang, Z. Q.; Wu, H. K. Synthesis, Characterization, and Electrochemistry of Monophosphine-Containing Diiron Propane‐1,2‐Dithiolate Complexes Related to the Active Site of [FeFe]‐Hydrogenases. Appl. Organomet. Chem. 2019, 33, e5196. DOI: 10.1002/aoc.5196..
  • Li, P.; Wang, M.; He, C.; Li, G.; Liu, X.; Chen, C.; Åkermark, B.; Sun, L. Influence of Tertiary Phosphanes on the Coordination Configurations and Electrochemical Properties of Iron Hydrogenase Model Complexes: Crystal Structures of [(μ-S2C3H6)Fe2(CO)6–nLn] (L = PMe2Ph, n = 1, 2; PPh3, P(OEt)3, n = 1). Eur. J. Inorg. Chem. 2005, 2005, 2506–2513.
  • Hu, M. Y.; Yan, L.; Li, J. R.; Wang, Y. H.; Zhao, P. H.; Liu, X. F. Reactions of Fe2(μ-Odt)(CO)6 (Odt = 1, 3-Oxadithiolate) with Small Bite-Angle Diphosphines to Afford the Monodentate, Chelate, and Bridge Diiron Complexes: Selective Substitution, Structures, Protonation, and Electrocatalytic Proton Eeduction. Appl. Organomet. Chem. 2019, 33, e4949. DOI: 10.1002/aoc.4949..
  • Zhao, P.-H.; Ma, Z.-Y.; Hu, M.-Y.; He, J.; Wang, Y.-Z.; Jing, X.-B.; Chen, H.-Y.; Wang, Z.; Li, Y.-L. PNP-Chelated and -Bridged Diiron Dithiolate Complexes Fe2(μ- Pdt)(CO)4{(Ph2P)2NR} Together with Related Monophosphine Complexes for the [2Fe]H Subsite of [FeFe]-Hydrogenases: Preparation, Structure, and Electrocatalysis. Organometallics 2018, 37, 1280–1290.
  • Li, Q. L.; Lü, S.; Zhang, R. F.; Zhao, D.; Ma, C. L. Substitution Reactions of Diiron Diselenolato Complex with Bisphosphine Ligands. Polyhedron 2019, 160, 255–260. DOI: 10.1016/j.poly.2018.12.044.
  • He, J.; Deng, C.-L.; Li, Y.; Li, Y.-L.; Wu, Y.; Zou, L.-K.; Mu, C.; Luo, Q.; Xie, B.; Wei, J.; et al. A New Route to the Synthesis of Phosphine-Substituted Diiron Aza- and Oxadithiolate Complexes. Organometallics 2017, 36, 1322–1330. DOI: 10.1021/acs.organomet.7b00040.
  • Li, Y. L.; Ma, Z. Y.; He, J.; Hu, M. Y.; Zhao, P. H. Aminophosphine-Substituted Diiron Dithiolate Complexes: Synthesis, Crystal Structure, and Electrocatalytic Investigation. J. Organomet. Chem. 2017, 851, 14–21.
  • Ortega-Alfaro, M. C.; Hernández, N.; Cerna, I.; López-Cortés, J. G.; Gómez, E.; Toscano, R. A.; Alvarez-Toledano, C. Novel Dinuclear Iron(0) Complexes from α,β-Unsaturated Ketones β-Positioned with Sulfide and Sulfoxide Groups. J. Organomet. Chem. 2004, 689, 885–893. DOI: 10.1016/j.jorganchem.2003.12.015.
  • Zhao, P. H.; Hu, M. Y.; Ma, Z. Y.; Li, J. R.; Wang, Y. Z.; He, J.; Li, Y. L.; Liu, X. F. Influence of Dithiolate Bridges on the Structures and Electrocatalytic Performance of Small Bite-Angle PNP-Chelated Diiron Complexes Fe2(μ- Xdt)(CO)4{κ2-(Ph2P)2NR} Related to [FeFe]-Hydrogenases. Organometallics 2019, 38, 385–394. DOI: 10.1021/acs.organomet.8b00759.
  • Ghosh, S.; Hogarth, G.; Hollingsworth, N.; Holt, K. B.; Kabir, S. E.; Sanchez, B. E. Hydrogenase Biomimetics: Fe2(CO)4(μ-dppf)(μ-pdt) (dppf = 1,1'-bis(diphenylphosphino)ferrocene) both a proton-reduction and hydrogen oxidation catalyst . Chem. Commun. (Camb.) 2014, 50, 945–947. DOI: 10.1039/c3cc46456c.
  • Chen, F. Y.; He, J.; Mu, C.; Liu, X. F.; Li, Y. L.; Jiang, Z. Q.; Wu, H. K. Synthesis and Characterization of Five Diiron Ethanedithiolate Complexes with Acetate Group and Phosphine Ligands. Polyhedron 2019, 160, 74–82. DOI: 10.1016/j.poly.2018.12.027.
  • Song, L. C.; Ge, J. H.; Zhang, X. G.; Liu, Y.; Hu, Q. M. Methoxyphenyl- Functionalized Diiron Azadithiolates as Models for the Active Site of Fe-Only Hydrogenases: Synthesis, Structures, and Biomimetic H2 Evolution. Eur. J. Inorg. Chem. 2006, 2006, 3204–3210.
  • Gloaguen, F.; Lawrence, J. D.; Rauchfuss, T. B. Biomimetic Hydrogen Evolution Catalyzed by an Iron Carbonyl Thiolate. J. Am. Chem. Soc. 2001, 123, 9476–9477.
  • Vannucci, A. K.; Wang, S.; Nichol, G. S.; Lichtenberger, D. L.; Evans, D. H.; Glass, R. S. Electronic and Geometric Effects of Phosphatriazaadamantane Ligands on the Catalytic Activity of an [FeFe] Hydrogenase Inspired Complex. Dalton Trans. 2010, 39, 3050–3056. DOI: 10.1039/B921067A.
  • Zaffaroni, R.; Rauchfuss, T. B.; Gray, D. L.; Gioia, L. D.; Zampella, G. Terminal vs Bridging Hydrides of Diiron Dithiolates: Protonation of Fe2(Dithiolate)(CO)2(PMe3)4. J. Am. Chem. Soc. 2012, 134, 19260–19269.
  • Lü, S.; Zhang, R. F.; Li, Q. L.; He, J.; Li, Y. L. Synthesis, Characterization and Electrochemical Properties of Two Isomers of Diiron Diselenolato Complexes and a New Pathway to the μ4-Se Twin Cluster. J. Organomet. Chem. 2018, 873, 66–72.
  • Song, L. C.; Wang, Y. X.; Xing, X. K.; Ding, S. D.; Zhang, L. D.; Wang, X. Y.; Zhang, H. T. Hydrophilic Quaternary Ammonium-Group-Containing [FeFe]- Hydrogenase Models: Synthesis, Structures, and Electrocatalytic Hydrogen Production. Chem. Eur. J. 2016, 22, 16304–16315.
  • Felton, G. A. N.; Mebi, C. A.; Petro, B. J.; Vannucci, A. K.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L. Review of Electrochemical Studies of Complexes Containing the Fe2S2 Core Characteristic of [FeFe]-Hydrogenases Including Catalysis by These Complexes of the Reduction of Acids to Form Dihydrogen. J. Organomet. Chem. 2009, 694, 2681–2699. DOI: 10.1016/j.jorganchem.2009.03.017.
  • APEX2, version 2009.7-0; Madison, WI: Bruker AXS, Inc., 2007.
  • Sheldrick, G. M. SADABS: Program for Absorption Correction of Area Detector Frames; Bruker AXS Inc.: Madison, WI, 2001.
  • Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. DOI: 10.1107/S0021889808042726.
  • Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. A Found. Crystallogr. 2008, 64, 112–122. DOI: 10.1107/S0108767307043930.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.