88
Views
3
CrossRef citations to date
0
Altmetric
Articles

Evaluating of the exergy efficiency of the silicon production process using artificial neural networks

ORCID Icon, , , &
Pages 756-766 | Received 10 Oct 2019, Accepted 14 Apr 2020, Published online: 27 Apr 2020

References

  • Möller, H. J.; Funke, C.; Rinio, M.; Scholz, S. Multicrystalline Silicon for Solar Cells. Thin Solid Films 2005, 487, 179–187. DOI: 10.1016/j.tsf.2005.01.061.
  • Zhou, S. C.; Chen, Z. J.; Ma, W. H.; Li, S. Y.; Wei, K. X.; Wu, J. J.; Yang, X. Effect of AC as a Reductant through the Coupling Treatment of Microwave-Assisted and Alkali Carbonate on Silicon Production. J. Alloy. Compd. 2020, 817, 152737. DOI: 10.1016/j.jallcom.2019.152737.
  • Bisio, G.; Rubatto, G.; Martini, R. Heat Transfer, Energy Saving and Pollution Control in UHP Electric-Arc Furnaces. Energy 2000, 25, 1047–1066. DOI: 10.1016/S0360-5442(00)00037-2.
  • Takla, M.; Kamfjord, N. E.; Tveit, H.; Kjelstrup, S. Energy and Exergy Analysis of the Silicon Production Process. Energy 2013, 58, 138–146. DOI: 10.1016/j.energy.2013.04.051.
  • Børset, M. T.; Kolbeinsen, L.; Tveit, H.; Kjelstrup, S. Exergy Based Efficiency Indicators for the Silicon Furnace. Energy 2015, 90, 1916–1921. DOI: 10.1016/j.energy.2015.07.010.
  • Hocine, L.; Yacine, D.; Kamel, B.; Samira, K. M. Improvement of Electrical Arc Furnace Operation with an Appropriate Model. Energy 2009, 34, 1207–1214. DOI: 10.1016/j.energy.2009.03.003.
  • Li, R.; Grosu, L.; Li, W. New Polytropic Model to Predict the Performance of Beta and Gamma Type Stirling Engine. Energy 2017, 128, 62–76. DOI: 10.1016/j.energy.2017.04.001.
  • Kirschen, M.; Risonarta, V.; Pfeifer, H. Energy Efficiency and the Influence of Gas Burners to the Energy Related Carbon Dioxide Emissions of Electric Arc Furnaces in Steel Industry. Energy 2009, 34, 1065–1072. DOI: 10.1016/j.energy.2009.04.015.
  • Kirschen, M.; Velikorodov, V.; Pfeifer, H. Mathematical Modeling of Heat Transfer in Dedusting Plants and Comparison of off-Gas Measurements at Electric Arc Furnaces. Energy 2006, 31, 2926–2939. DOI: 10.1016/j.energy.2005.12.006.
  • Nardin, G.; Meneghetti, A.; Dal Magro, F.; Benedetti, N. PCM-Based Energy Recovery from Electric Arc Furnaces. Appl. Energy 2014, 136, 947–955. DOI: 10.1016/j.apenergy.2014.07.052.
  • Kirschen, M.; Badr, K.; Pfeifer, H. Influence of Direct Reduced Iron on the Energy Balance of the Electric Arc Furnace in Steel Industry. Energy 2011, 36, 6146–6155. DOI: 10.1016/j.energy.2011.07.050.
  • Gajic, D.; Savic-Gajic, I.; Savic, I.; Georgieva, O.; Di Gennaro, S. Modelling of Electric Energy Consumption in an Electric Arc Furnace Using Artificial Neural Networks. Energy 2016, 108, 132–139. DOI: 10.1016/j.energy.2015.07.068.
  • Chen, Z. J.; Ma, W. H.; Wu, J. J.; Wei, K. X.; Yang, X.; Lv, G. Q.; Xie, K. Q.; Yu, J. Influence of Carbothermic Reduction on Submerged Arc Furnace Energy Efficiency during Silicon Production. Energy 2016, 116, 687–693. DOI: 10.1016/j.energy.2016.09.034.
  • Benyounis, K. Y.; Olabi, A. G. Optimization of Different Welding Processes Using Statistical and Numerical Approaches: A Reference Guide. Adv. Eng. Softw. 2008, 39, 483–496. DOI: 10.1016/j.advengsoft.2007.03.012.
  • Lashkarbolooki, M.; Vaferi, B.; Shariati, A.; Zeinolabedini Hezave, A. Investigating Vapor-Liquid Equilibria of Binary Mixtures Containing Supercritical or Near-Critical Carbon Dioxide and a Cyclic Compound Using Cascade Neural Network. Fluid Phase Equilibr. 2013, 343, 24–29. DOI: 10.1016/j.fluid.2013.01.012.
  • Savic, I. M.; Stojiljkovic, S. T.; Savic, I. M.; Stojanovic, S. B.; Moder, K. Modeling and Optimization of Fe (III) Adsorption from Water Using Bentonite Clay: Comparison of Central Composite Design and Artificial Neural Network. Chem. Eng. Technol. 2012, 35, 2007–2014. DOI: 10.1002/ceat.201200085.
  • Li, W. W.; Wu, X. L.; Jiao, W. Z.; Qi, G. S.; Liu, Y. Z. Modelling of Dust Removal in Rotating Packed Bed Using Artificial Neural Networks (ANN). Appl. Therm. Eng. 2017, 112, 208–213. DOI: 10.1016/j.applthermaleng.2016.09.159.
  • Savic, I. M.; Nikolic, V. D.; Savic-Gajic, I. M.; Nikolic, L. B.; Ibric, S. R.; Gajic, D. G. Optimization of Technological Procedure for Amygdalin Isolation from Plum Seeds (Pruni Domesticae Semen). Front. Plant. Sci. 2015, 6, 276. DOI: 10.3389/fpls.2015.00276.
  • Fernandez, J. M. M.; Cabal, V. A.; Montequin, V. R.; Balsera, J. V. Online Estimation of Electric Arc Furnace Taps Temperature by Using Fuzzy Neural Networks. Eng. Appl. Artif. Intel. 2008, 21, 1001–1012. DOI: 10.1016/j.engappai.2007.11.008.
  • Ariana, M. A.; Vaferi, B.; Karimi, G. Prediction of Thermal Conductivity of Alumina Water-Based Nanofluids by Artificial Neural Networks. Power Technol. 2015, 278, 1–10. DOI: 10.1016/j.powtec.2015.03.005.
  • Chang, G. W.; Chen, C. I.; Liu, Y. J. A Neural-Network-Based Method of Modeling Electric Arc Furnace Load for Power Engineering Study. IEEE Trans. Power Syst. 2010, 25, 138–146. DOI: 10.1109/TPWRS.2009.2036711.
  • Vaferi, B.; Samimi, F.; Pakgohar, E.; Mowla, D. Artificial Neural Network Approach for Prediction of Thermal Behavior of Nanofluids Flowing through Circular Tubes. Power Technol. 2014, 267, 1–10. DOI: 10.1016/j.powtec.2014.06.062.
  • Baumert, J. C.; Engel, R.; Weiler, C. Dynamic Modeling of the Electric Arc Furnace Process Using Artificial Neural Networks. Rev. Met. Paris. 2002, 99, 839–849. DOI: 10.1051/metal:2002144.
  • Chen, Z. J.; Ma, W. H.; Wei, K. X.; Wu, J. J.; Li, S. Y.; Xie, K. Q.; Lv, G. Q. Artificial Neural Network Modeling for Evaluating the Power Consumption of Silicon Production in Submerged Arc Furnaces. Appl. Therm. Eng. 2017, 112, 226–236. DOI: 10.1016/j.applthermaleng.2016.10.087.
  • Chen, Z. J.; Ma, W. H.; Wu, J. J.; Wei, K. X.; Lv, G. Q.; Liu, Z. W. Predicting the Electricity Consumption and the Exergetic Efficiency of Submerged Arc Furnace with Raw Materials Using Artificial Neural Network. Silicon 2018, 10, 603–608. DOI: 10.1007/s12633-016-9499-4.
  • Singh, V.; Tathavadkar, V.; Rao, S. M.; Raju, K. S. Predicting the Performance of Submerged Arc Furnace with Varied Raw Material Combinations Using Artificial Neural Network. J. Mater. Process. Technol. 2007, 183, 111–116. DOI: 10.1016/j.jmatprotec.2006.10.004.
  • Zeghal, M. Modeling the Creep Compliance of Asphalt Concrete Using the Artificial Neural Network Technique. Geotech. Special Publ. 2008, 179, 910–916. DOI: 10.1061/40972(311)114.
  • Vaferi, B.; Karimi, M.; Azizi, M.; Esmaeili, H. Comparison between the Artificial Neural Network, SAFT and PRSV Approach in Obtaining the Solubility of Solid Aromatic Compounds in Supercritical Carbon Dioxide. J. Supercrit. Fluids 2013, 77, 44–51. DOI: 10.1016/j.supflu.2013.02.027.
  • Sinha, K.; Chowdhury, S.; Saha, P. D.; Datta, S. Modeling of Microwave-Assisted Extraction of Natural Dye from Seeds of Bixa Orellana (Annatto) Using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). Ind. Crop. Prod. 2013, 41, 165–171. DOI: 10.1016/j.indcrop.2012.04.004.
  • Fourati, F.; Chtourou, M.; Kamoun, M. Stabilization of Unknown Nonlinear Systems Using Neural Networks. Appl. Soft. Comput. 2008, 8, 1121–1130. DOI: 10.1016/j.asoc.2007.04.002.
  • Manjunath, P. G. C.; Shettigar, A. K.; Parappagoudar, M. B. A Systematic Approach to Model and Optimize Wear Behaviour of Castings Produced by Squeeze Casting Process. J. Manuf. Process. 2018, 32, 199–212. DOI: 10.1016/j.jmapro.2018.02.004.
  • Manjunath, P. G. C.; Shettigar, A. K.; Krishna, P.; Parappagoudar, M. B. Back Propagation Genetic and Recurrent Neural Network Applications in Modelling and Analysis of Squeeze Casting Process. Appl. Soft Comput. 2017, 59, 418–437. DOI: 10.1016/j.asoc.2017.06.018.
  • Zhan, X.; Jia, J.; Zhou, Z.; Wang, F. Influence of Blending Methods on the Co-Gasification Reactivity of Petroleum Coke and Lignite. Energy Convers. Manage. 2011, 52, 1810–1814. DOI: 10.1016/j.enconman.2010.11.009.
  • Zubkova, V. V. The Effect of Coal Charge Density, Heating Velocity and Petroleum Coke on the Structure of Cokes Heated to 1800 °C. Fuel 1999, 78, 1327–1332. DOI: 10.1016/S0016-2361.(99)00060-5.
  • Jing, X.; Wang, Z.; Yu, Z.; Zhang, Q.; Li, C.; Fang, Y. Experimental and Kinetic Investigations of CO2 Gasification of Fine Chars Separated from a Pilot-Scale Fluidized-Bed Gasifier. Energy Fuels 2013, 27, 2422–2430. DOI: 10.1021/ef4002296.
  • Irfan, M. F.; Usman, M. R.; Kusakabe, K. Coal Gasification in CO2 Atmosphere and Its Kinetics since 1948: A Brief Review. Energy 2011, 36, 12–40. DOI: 10.1016/j.energy.2010.10.034.
  • Hattingh, B. B.; Everson, R. C.; Neomagus, H. W. J. P.; Bunt, J. R. Assessing the Catalytic Affect of Coal Ash Constituents on the CO2 Gasification Rate of High Ash South African Coal. Fuel Process Technol. 2011, 92, 2046–2054. DOI: 10.1016/j.fuproc.2011.06.003.
  • Kasaoka, S.; Sakata, Y.; Shimada, M. Effects of Coal Carbonization Conditions on Rate of Steam Gasification of Char. Fuel 1987, 66, 697–701. DOI: 10.1016/0016-2361(87)90282-1.
  • Lahijani, P.; Zainal, Z. A.; Mohamed, A. R.; Mohammadi, M. CO2 Gasification Reactivity of Biomass Char: Catalytic Influence of Alkali, Alkaline Earth and Transition Metal Salts. Bioresource Technol. 2013, 144, 288–295. DOI: 10.1016/j.biortech.2013.06.059.
  • Edreis, E. M. A.; Luo, G. Q.; Li, A. J.; Xu, C. F.; Yao, H. Synergistic Effects and Kinetics Thermal Behaviour of Petroleum Coke/Biomass Blends during H2O co-Gasification. Energ. Convers. Manage. 2014, 79, 355–366. DOI: 10.1016/j.enconman.2013.12.043.
  • Liu, H.; Luo, C. H.; Toyota, M.; Uemiya, S.; Kojima, T. Kinetics of CO2/Char Gasification at Elevated Temperatures. Part II: Clarification of Mechanism Through Modelling and Char Characterization. Fuel Process Technol. 2006, 87, 769–774. DOI: 10.1016/j.fuproc.2006.02.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.