109
Views
1
CrossRef citations to date
0
Altmetric
Articles

Power splitter and TE-TM polarization separator based on magneto-photonic crystal fiber

, , , &
Pages 924-929 | Received 07 Mar 2020, Accepted 29 Jun 2020, Published online: 25 Sep 2020

References

  • Buyukalp, Y.; Catrysse, P. B.; Shin, W.; Fan, S. Planar, Ultrathin, Subwavelength Spectral Light Separator for Efficient, Wide-Angle Spectral Imaging. Am. Chem. Soc. ACS Photon. 2017, 4, 525–535. DOI: 10.1021/acsphotonics.6b00705.
  • Chen, Y.; Marceau, C.; Théberge, F.; Châteauneuf, M.; Dubois, J.; Chin, S. L. Polarization Separator Created by a Filament in Air. Opt. Lett. 2008, 33, 2731. DOI: 10.1364/OL.33.002731.
  • Koposova, E. V.; Lubyako, L. Corrugation Profile for the Quasioptical Polarization Separator. Radiophys. Quantum El. 2014, 57, 141–150. DOI: 10.1007/s11141-014-9499-4.
  • Ward, B. G. Accurate Modeling of Rod-Type Photonic Crystal Fiber Amplifiers. Paper presented at the Proc. SPIE 9728, Fiber Lasers XIII: Technology, Systems, and Applications, 97280F, San Francisco, California, United States, Mar 9, 2016.
  • Taghizadeh, M.; Hatami, M.; Pakarzadeh, H.; Kazem Tavassoly, M. Pulsed Optical Parametric Amplification Based on Photonic Crystal Fibres. J. Mod. Opt. 2017, 64, 357–365. DOI: 10.1080/09500340.2016.1237684.
  • Franczyk, M.; Stepien, R.; Pysz, D.; Kujawa, I.; Buczynski, R. Phosphate Yb3+ Photonic Crystal Fiber Single-Mode Laser with Enormous High Pump Absorption. Laser Phys. Lett. 2014, 11, 085104. DOI: 10.1088/1612-2011/11/8/085104.
  • Ortega, J.; Folcia, C. L.; Etxebarria, J. Laser Emission at the Second-Order Photonic Band Gap in an Electric-Field-Distorted Cholesteric Liquid Crystal. Liq. Cryst. 2019, 46, 2159–2166. DOI: 10.1080/02678292.2019.1613694.
  • Bendjelloul, R.; Bouchemat, T.; Bouchemat, M. An Optical Channel Drop Filter Based on 2D Photonic Crystal Ring Resonator. J. Electromagn. Waves Appl. 2016, 30, 2402–2410. DOI: 10.1080/09205071.2016.1253508.
  • Pu, S.; Chen, X.; Di, Z.; Xia, Y. Relaxation Property of the Magnetic-Fluid-Based Fiber-Optic-Evanescent Field Modulator. J. Appl. Phys. 2007, 101, 053532. DOI: 10.1063/1.2709526.
  • Lebbal, M. R.; Boumaza, T.; Bouchemat, M. Analysis of Birefringence in Magneto-Optical Waveguides Based on Nanoparticles Doped Sol–Gel Matrix with an Optimized Substrate. J. Magn. Magn. Mater. 2015, 373, 173–176. DOI: 10.1016/j.jmmm.2014.03.010.
  • Otmani, H.; Bouchemat, M.; Hocini, A.; Boumaza, T.; Benmerkhi, a. Mode Conversion in Magneto Photonic Crystal Fibre. J. Magn. Magn. Mater. 2017, 421, 377–383. DOI: 10.1016/j.jmmm.2016.08.032.
  • Pu, S.; Dong, S.; Huang, J. Tunable Slow Light Based on Magnetic-Fluid-Infiltrated Photonic Crystal Waveguides. J. Opt. 2014, 16, 045102. DOI: 10.1088/2040-8978/16/4/045102.
  • Li, J.; Wang, R.; Wang, J.; Zhang, B.; Xu, Z.; Wang, H. Novel Magnetic Field Sensor Based on Magnetic Fluids Infiltrated Dual-Core Photonic Crystal Fibers. Opt. Fiber Technol. 2014, 20, 100–105. DOI: 10.1016/j.yofte.2013.12.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.