276
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Pentacoordinated diorganotin(IV) complexes resulting from tridentate (NOO) donor Schiff bases: Synthesis, characterization, in vitro antioxidant, antimicrobial activities, and QSAR studies

ORCID Icon, , &
Pages 119-132 | Received 29 May 2020, Accepted 31 Aug 2020, Published online: 15 Sep 2020

References

  • Golcu, A.; Tumer, M.; Demirelli, H.; Wheatley, R.-A. Cd(II) and Cu(II) Complexes of Polydentate Schiff Base Ligands: Synthesis, Characterization, Properties and Biological Activity. Inorg. Chim. Acta 2005, 358, 1785–1797. DOI: 10.1016/j.ica.2004.11.026.
  • Devi, J.; Yadav, M.; Kumar, D.; Naik, L.-S.; Jindal, D.-K. Some Divalent Metal(II) Complexes of Salicylaldehyde Derived Schiff Bases: Synthesis, Spectroscopic Characterization, Antimicrobial and in Vitro Anticancer Studies. Appl. Organomet. Chem. 2019, 33, 4693–4715. DOI: 10.1002/aoc.4693.
  • Rawal, R. K.; Tripathi, R.; Katti, S. B.; Pannecouque, C.; De Clercq, E. Design, Synthesis, and Evaluation of 2-Aryl-3-Heteroaryl-1,3-Thiazolidin-4-Ones as Anti-HIV Agents. Bioorg. Med. Chem. 2007, 15, 1725–1731. DOI: 10.1016/j.bmc.2006.12.003.
  • Omar, M.-M.; Mohamed, G.-G.; Ibrahim, A.-A. Spectroscopic Characterization of Metal Complexes of Novel Schiff Base. Synthesis, Thermal and Biological Activity Studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 73, 358–369. DOI: 10.1016/j.saa.2009.02.043.
  • Huang, G.-S.; Liang, Y.-M.; Wu, X.-L.; Liu, W.-M.; Ma, Y.-X. Some Ferrocenyl Schiff Bases with Nonlinear Optical Properties. Appl. Organomet. Chem. 2003, 17, 706–710. DOI: 10.1002/aoc.503.
  • Devi, J.; Yadav, M.; Kumar, D.; Jindal, D.-K.; Poornachandra, Y. Synthesis, Spectroscopic Characterization, Biological Screening and in Vitro Cytotoxic Studies of 4-Methyl-3-Thiosemicarbazone Derived Schiff Bases and Their Co(II), Ni(II), Cu(II) and Zn(II) Complexes. Appl. Organomet. Chem. 2019, 33, 5154–5177. DOI: 10.1002/aoc.5154.
  • Devi, J.; Batra, N. Synthesis, Characterization and Antimicrobial Activities of Mixed Ligand Transition Metal Complexes with Isatin Monohydrazone Schiff Base Ligands and Heterocyclic Nitrogen Base. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 135, 710–719. DOI: 10.1016/j.saa.2014.07.041.
  • Devi, J.; Batra, N.; Malhotra, R. Ligational Behavior of Schiff Bases towards Transition Metal Ion and Metalation Effect on Their Antibacterial Activity. Spectrochim. Acta A Mol. Biomol. 2012, 97, 397–405. DOI: 10.1016/j.saa.2012.06.026.
  • Ahamad, M.-N.; Iman, K.; Raza, M.-K.; Kumar, M.; Ansari, A.; Ahmad, M.; Shahid, M. Anticancer Properties, Apoptosis and Catecholase Mimic Activities of Dinuclear Cobalt(II) and Copper(II) Schiff Base Complexes. Bioorg. Chem. 2020, 95, 103561–103607. DOI: 10.1016/j.bioorg.2019.103561.
  • Aksuner, N.; Henden, E.; Yilmaz, I.; Cukurovali, A. Selective Optical Sensing of Copper(II) Ions Based on a Novel Cyclobutane-Substituted Schiff Base Ligand Embedded in Polymer Films. Sens. Actuators B 2008, 134, 510–515. DOI: 10.1016/j.snb.2008.05.041.
  • Andiappan, K.; Sanmugam, A.; Deivanayagam, E.; Karuppasamy, K.; Kim, H.-S.; Vikraman, D. Schiff Base Rare Earth Metal Complexes: Studies on Functional, Optical and Thermal Properties and Assessment of Antibacterial Activity. Int. J. Biol. Macromol. 2019, 124, 403–410. DOI: 10.1016/j.ijbiomac.2018.11.251.
  • Dharani, S.; Kalaiarasi, G.; Sindhuja, D.; Lynch, V.-M.; Shankar, R.; Karvembu, R.; Prabhakaran, R. Tetranuclear Palladacycles of 3-Acetyl-7-Methoxy-2-H-Chromen-2-One Derived Schiff Bases: Efficient Catalysts for Suzuki-Miyaura Coupling in an Aqueous Medium. Inorg. Chem. 2019, 58, 8045–8055. DOI: 10.1021/acs.inorgchem.9b00794.
  • Crowe, A.-J. Organotin Compounds in Agriculture since 1980: Part 2. Acaricidal, Antifeedant, Chemosterilant and Insecticidal Properties. Appl. Organomet. Chem. 1987, 1, 331–346. DOI: 10.1002/aoc.590010407.
  • Piver, W.-T. Organotin Compounds: Industrial Applications and Biological Investigation. Environ. Health Perspect. 1973, 4, 61–79. DOI: 10.1289/ehp.730461.
  • Munoz-Flores, B.-M.; Santillán, R.; Farfan, N.; Álvarez-Venicio, V.; Jiménez-Pérez, V.-M.; Rodríguez, M.; Morales-Saavedra, O.-G.; Lacroix, P.-G.; Lepetit, C.; Nakatani, K. Synthesis, X-Ray Diffraction Analysis and Nonlinear Optical Properties of Hexacoordinated Organotin Compounds Derived from Schiff Bases. J. Organomet. Chem. 2014, 769, 64–71. DOI: 10.1016/j.jorganchem.2014.07.002.
  • Shah, G.-B. Effect of Length of Ligand in Organotin Compounds on Their Catalytic Activity for the Polycondensation of Silicone. J. Appl. Polym. Sci. 1998, 70, 2235–2239. DOI: 10.1002/(SICI)1097-4628(19981212)70:11<2235::AID-APP17>3.0.CO;2-9.
  • Vieira, F.-T.; de Lima, G.-M.; da, J.-R.; Maia, S.; Speziali, N.-L.; Ardisson, J.-D.; Rodrigues, L.; Junior, A.-C.; Romero, O.-B. Synthesis, Characterization and Biocidal Activity of New Organotin Complexes of 2-(3-Oxocyclohex-1-Enyl)Benzoic Acid. Eur. J. Med. Chem. 2010, 45, 883–889. DOI: 10.1016/j.ejmech.2009.11.026.
  • Suzuki, T.; Takakura, I.; Yoda, M. Reaction of PVC Model Compounds with Organotin Thermal Stabilizer. Eur. Polym. J. 1971, 7, 1105–1110. DOI: 10.1016/0014-3057(71)90142-X.
  • Hobbs, L.-A.; Smith, P.-J. Monoorganotin(IV) Compounds as Esterification and Transesterification Catalysts. Appl. Organomet. Chem. 1992, 6, 95–100. DOI: 10.1002/aoc.590060112.
  • Otera, J.; Danoh, N.; Nozaki, H. Novel Template Effects of Distannoxane Catalysts in Highly Efficient Transesterification and Esterification. J. Org. Chem. 1991, 56, 5307–5311. DOI: 10.1021/jo00018a019.
  • Cervantes, J.; Zárraga, R.; Salazar-Hernández, C. Organotin Catalysts in Organosilicon Chemistry. Appl. Organomet. Chem. 2012, 26, 157–163. DOI: 10.1002/aoc.2832.
  • Tian, L.; Sun, Y.; Li, H.; Zheng, X.; Cheng, Y.; Liu, X.; Qian, B. Synthesis, Characterization and Biological Activity of Triorganotin 2-Phenyl-1,2,3-Triazole-4-Carboxylates. J. Inorg. Biochem. 2005, 99, 1646–1652. DOI: 10.1016/j.jinorgbio.2005.05.006.
  • Mehmood, M.; Tahir, M.-N.; Haq, I.-U.; Zahra, S.-S. Synthetic Stratagem, Characterization and Biocidal Applications of Triorganotin(IV) Complexes Derived from Hydrazide/Hydrazone Analogues. Inorg. Chim. Acta 2019, 486, 387–394. DOI: 10.1016/j.ica.2018.10.009.
  • Shiryaev, V.-I.; Storozhenko, P.-A. Application of Organotin Compounds for Protecting Wood and Other Materials and in Nonfouling Paints. Polym. Sci. Ser. D 2012, 5, 221–230. DOI: 10.1134/S1995421212030203.
  • Muhammad, N.; Ali, S.; Tahir, M.-N.; Shujah, S.; Wadood, A.; Khan, H. Diorganotin(IV) Carboxylates of 3-Methylphenyl Ethanoic Acid: Synthesis, Crystal Structure, Antibacterial, Anticancer and Molecular Docking Studies. Phosphorus, Sulfur, Silicon Relat. Elem. 2019, 194, 1067–1073. DOI: 10.1080/10426507.2019.1603227.
  • Shaheen, F.; Ali, S.; Shahzadi, S. Synthesis, Characterization, and Anticancer Activity of Organotin(IV) Complexes with Sodium 3-(1H-Indol-3-yl)Propanoate. Russ. J. Gen. Chem. 2017, 87, 2937–2943. DOI: 10.1134/S1070363217120350.
  • Devi, J.; Yadav, J. Recent Advancements in Organotin(IV) Complexes as Potential Anticancer Agents. Anticancer Agents Med. Chem. 2018, 18, 335–353. DOI: 10.2174/1871520617666171106125114.
  • Ullah, H.; Previtali, V.; Mihigo, H.-B.; Twamley, B.; Rauf, M.-K.; Javed, F.; Waseem, A.; Baker, R.-J.; Rozas, I. Structure–Activity Relationships of New Organotin(IV) Anticancer Agents and Their Cytotoxicity Profile on HL-60, MCF-7 and HeLa Human Cancer Cell Lines. Eur. J. Med. Chem. 2019, 181, 111544–111553. DOI: 10.1016/j.ejmech.2019.07.047.
  • Agiorgiti, M. S.; Evangelou, A.; Vezyraki, P.; Hadjikakou, S. K.; Kalfakakou, V.; Tsanaktsidis, I.; Batistatou, A.; Zelovitis, J.; Simos, Y. V.; Ragos, V.; et al. Cytotoxic Effect, Antitumour Activity and Toxicity of Organotin Derivatives with Ortho-or Para-Hydroxy-Benzoic Acids. Med. Chem. Res. 2018, 27, 1122–1130. DOI: 10.1007/s00044-018-2135-7.
  • Adeyemi, J.-O.; Onwudiwe, D.-C.; Ekennia, A.-C.; Anokwuru, C.-P.; Nundkumar, N.; Singh, M.; Hosten, E.-C. Synthesis, Characterization and Biological Activities of Organotin(IV)Diallyldithiocarbamate Complexes. Inorg. Chim. Acta 2019, 485, 64–72. DOI: 10.1016/j.ica.2018.09.085.
  • Butt, A.-F.; Ahmed, M.-N.; Bhatti, M.-H.; Choudhary, M.-A.; Ayub, K.; Tahir, M.-N.; Mahmood, T. Synthesis, Structural Properties, DFT Studies, Antimicrobial Activities and DNA Binding Interactions of Two Newly Synthesized Organotin(IV) Carboxylates. J. Mol. Struct. 2019, 1191, 291–300. DOI: 10.1016/j.molstruc.2019.04.066.
  • Adeyemi, J.-O.; Onwudiwe, D.-C.; Ekennia, A.-C.; Hosten, E.-C.; Okafor, S.-N. Organotin(IV) N-Butyl-N-Phenyldithiocarbamate Complexes: Synthesis, Characterization, Biological Evaluation and Molecular Docking Studies. J. Mol. Struct. 2019, 1192, 15–26. DOI: 10.1016/j.molstruc.2019.04.097.
  • Kumari, S.; Sharma, N. Nitrosubstituted Hydroxamate Ligands in New Triphenyltin(IV) Complexes as Prospective Antimicrobial Agents. J. Coord. Chem. 2019, 72, 584–599. DOI: 10.1080/00958972.2019.1573993.
  • Romero-Chávez, M. M.; Pineda-Urbina, K.; Pérez, D. J.; Obledo-Benicio, F.; Flores-Parra, A.; Gómez-Sandoval, Z.; Ramos-Organillo, Á. Organotin(IV) Compounds Derived from Ibuprofen and Cinnamic Acids, An Alternative into Design of anti-Inflammatory by the Cyclooxygenases (COX-1 and COX-2) Pathway. J. Organomet. Chem. 2018, 862, 58–70. DOI: 10.1016/j.jorganchem.2018.02.049.
  • Banti, C.-N.; Hadjikakou, S.-K.; Sismanoglu, T.; Hadjiliadis, N. Anti-Proliferative and Antitumor Activity of Organotin(IV) Compounds. An Overview of the Last Decade and Future Perspectives. J. Inorg. Biochem. 2019, 194, 114–152. DOI: 10.1016/j.jinorgbio.2019.02.003.
  • Cronin, M.-T.-D. Quantitative Structure–Activity Relationships (QSARs) – Applications and Methodology. In Recent Advances in QSAR Studies; Springer: Dordrecht, 2010; pp 3–11.DOI: 10.1007/978-1-4020-9783-6_1.
  • Jamil, K.; Wajid, R.; Bakhtiar, M.; Danish, M. Biologically Active Organotin(IV) Schiff Base Complexes. J. Iran Chem. Soc. 2010, 7, 495–499. DOI: 10.1007/BF03246037.
  • Singh, H.-L.; Singh, J.-B.; Sharma, K.-P. Synthetic, Structural, and Antimicrobial Studies of Organotin(IV) Complexes of Semicarbazone, Thiosemicarbazone Derived from 4-Hydroxy-3-Methoxybenzaldehyde. Res. Chem. Intermed. 2012, 38, 53–65. DOI: 10.1007/s11164-011-0325-8.
  • Baul, T.-S.-B.; Kehie, P.; Duthie, A.; Guchhait, N.; Raviprakash, N.; Mokhamatam, R.-B.; Manna, S.-K.; Armata, N.; Scopelliti, M.; Wang, R.; Englert, U. Synthesis, Photophysical Properties and Structures of organotin-Schiff Bases Utilizing Aromatic Amino Acid from the Chiral Pool and Evaluation of the Biological Perspective of a Triphenyltin Compound. J. Inorg. Biochem. 2017, 168, 76–89. DOI: 10.1016/j.jinorgbio.2016.12.001.
  • Zhang, L.-J.; Zhou, Y.-S.; Zeng, X.-R.; Vittal, J.-J.; You, X.-Z. Synthesis, Molecular, and Crystal Structure of a New Organotin/Schiff-Base Complex C28H31Cl3NO4Sn. J. Chem. Crystallogr. 2000, 30, 259–263. DOI: 10.1016/S0022-2860(00)00545-7.
  • Sedaghat, T.; Monajjemzadeh, M. Some New Organotin(IV) Schiff Base Adducts: Synthesis, Spectroscopic Characterization and Thermal Studies. J. Iran Chem. Soc. 2011, 8, 477–483. DOI: 10.1007/BF03249081.
  • Beltran, H.-I.; Damian-Zea, C.; Hernandez-Ortega, S.; Nieto-Camacho, A.; Ramiraz-Apan, M.-T. Synthesis and Characterization of Di-Phenyl-Tin(IV)-Salicyliden-Ortho-Aminophenols: Analysis of In Vitro Antitumor/Antioxidant Activities and Molecular Structures. J. Inorg. Biochem. 2007, 101, 1070–1085. DOI: 10.1016/j.jinorgbio.2007.04.002.
  • Zamudio-Rivera, L.-S.; George-Tellez, R.; Lopez-Mendoza, G.; Morales-Pacheco, A.; Flores, E.; Hopfl, H.; Barba, V.; Fern´Andez, F.-J.; Cabirol, N.; Beltran, H.-I. Synthesis, Characterization, Biocide and Toxicological Activities of Di-n-Butyl- and Diphenyl-Tin(IV)-Salicyliden-Beta-Amino Alcohol Derivatives. Inorg. Chem. 2005, 44, 5370–5378. DOI: 10.1021/ic048628o.
  • Pettinari, C.; Marchetti, F.; Pettinari, R.; Martini, D.; Drozdov, A.; Troyanov, S. Synthesis and Characterisation of Tin(IV) and Organotin(IV) Derivatives 2-{[(2-Hydroxyphenyl) Imino]Methyl}Phenol. Inorg. Chim. Acta 2001, 325, 103–114. DOI: 10.1016/S0020-1693(01)00654-5.
  • Sirajuddin, M.; Ali, S.; McKee, V.; Sohail, M.; Pasha, H. Potentially Bioactive Organotin(IV) Compounds: Synthesis, Characterization, in Vitro Bioactivities and Interaction with SS-DNA. Eur. J. Med. Chem. 2014, 84, 343–363. DOI: 10.1016/j.ejmech.2014.07.028.
  • Sirajuddin, M.; Ali, S.; McKee, V.; Zaib, S.; Iqbal, J. Organotin(IV) Carboxylate Derivatives as a New Addition to Anticancer and Antileishmanial Agents: design, Physicochemical Characterization and Interaction with Salmon Sperm DNA. RSC Adv. 2014, 4, 57505–57521. DOI: 10.1039/C4RA10487K.
  • Mun, L. S.; Hapipah, M. A.; Shin, S. K.; Sri Nurestri, A. M.; Mun, L. K. Synthesis, Structural Characterization and in Vitro Cytotoxicity of Diorganotin Complexes with Schiff Base Ligands Derived from 3-Hydroxy-2-Naphthoylhydrazide. Appl. Organomet. Chem. 2012, 26, 310–319. DOI: 10.1002/aoc.2862.
  • Devi, J.; Devi, S.; Kumar, A. Synthesis, Characterization, and Quantitative Structure-Activity Relationship Studies of Bioactive Dehydroacetic Acid and Amino Ether Schiff Base Complexes. Heteroatom Chem. 2016, 27, 361–371. DOI: 10.1002/hc.21347.
  • Kapoor, R.; Gupta, A.; Kapoor, P.; Venugopalan, P. The Synthesis, NMR (1H, 13C, 119Sn) and IR Spectral Studies of Some di-and Tri-Organotin(IV) Sulfonates: X-Ray Crystal Structure of [(n-C4H9)2Sn(OSO2C6H4CH3-4)2.2H2O]. Appl. Organomet. Chem. 2003, 17, 607–615. DOI: 10.1002/aoc.481.
  • Akremi, A.; Noubigh, A.; Abualreish, M.-J.-A. Novel Organotin(IV) Complexes Derived from Chiral Benzimidazoles: Synthesis, Molecular Structure and Spectral Properties. Orient. J. Chem. 2018, 34, 764–770. DOI: 10.13005/ojc/340220.
  • Beltrán, H.-I.; Zamudio-Rivera, L.-S.; Mancilla, T.; Santillan, R.; Farfan, N. One-Step Preparation, Structural Assignment, and X-ray Study of 2,2-Di-n-Butyl- and 2,2-Diphenyl-6-Aza-1,3-Dioxa-2-Stannabenzocyclononen-4-Ones Derived from Amino Acids. Chemistry 2003, 9, 2291–2306. DOI: 10.1002/chem.200204260.
  • Jain, V.-K.; Mason, J.; Saraswat, B.-S.; Mehrotra, R.-C. 15N, 13C and 119Sn NMR and Other Spectroscopic Studies of 8-Quinolinol, Its O- and N-Methyl Derivatives, and Chelate Di- and Tri-Organotin(IV) Complexes. Polyhedron 1985, 4, 2089–2096. DOI: 10.1016/S0277-5387(00)86741-8.
  • Devi, J.; Yadav, J.; Kumar, D.; Jindal, D.-K.; Basu, B. Synthesis, Spectral Analysis and In Vitro Cytotoxicity of Diorganotin (IV) Complexes Derived from Indole‐3‐Butyric Hydrazide. Appl. Organomet. Chem. In press. DOI: 10.1002/aoc.5815.
  • Vinayak, R.; Dey, D.; Ghosh, D.; Chattopadhyay, D.; Ghosh, A.; Nayek, H.-P. Schiff Base Supported Mononuclear Organotin(IV) Complexes: Syntheses, Structures and Fluorescence Cell Imaging. Appl. Organomet. Chem. 2018, 32, 4122–4132. DOI: 10.1002/aoc.4122.
  • Endo, A.; Ogasawara, M.; Takahashi, A.; Yokoyama, D.; Kato, Y.; Adachi, C. Thermally Activated Delayed Fluorescence from Sn(4+)-Porphyrin Complexes and their Application to Organic Light Emitting Diodes – A Novel Mechanism for Electroluminescence. Adv. Mater. Weinheim 2009, 21, 4802–4806. DOI: 10.1002/adma.200900983.
  • Crawford, S.-M.; Adeeb Al-Sheikh, A.; Stanley, C.-T.; Thompson, A. Synthesis and Characterization of Fluorescent Pyrrolyldipyrrinato Sn(IV) Complexes. Inorg. Chem. 2011, 50, 8207–8213. DOI: 10.1021/ic200731t.
  • Prasad, K.-S.; Kumar, L.-S.; Prasad, M.; Revanasiddappa, H.-D. Novel Organotin(IV)-Schiff Base Complexes: Synthesis, Characterization, Antimicrobial Activity, and DNA Interaction Studies. Bioinorg. Chem. Appl. 2010, 2010, 1–8. DOI: 10.1155/2010/854514.
  • Ejidike, I.-P. Cu(II) Complexes of 4-[(1E)-N-{2-[(Z)-Benzylidene-Amino]Ethyl}Ethanimidoyl] Benzene-1,3-Diol Schiff Base: Synthesis, Spectroscopic, in-Vitro Antioxidant, Antifungal and Antibacterial Studies. Molecules 2018, 23, 1581. DOI: 10.3390/molecules23071581.
  • Ejidike, I.-P.; Ajibade, P.-A. Synthesis, Spectroscopic, Antibacterial and Free Radical Scavenging Studies of Cu(II), Ni(II), Zn(II) and Co(II) Complexes of 4,4'-{Ethane-1,2-Diylbis[Nitrilo(1E)Eth-1-yl-1-Ylidene]}Dibenzene-1,3-Diol Schiff Base. J. Pharm. Sci. Res. 2017, 9, 593–600.
  • Matthaus, B. Antioxidant Activity of Extracts Obtained from Residues of Different Oilseeds. J. Agric. Food Chem. 2002, 50, 3444–3452. DOI: 10.1021/jf011440s.
  • Shpakovsky, D. B.; Banti, C. N.; Mukhatova, E. M.; Gracheva, Y. A.; Osipova, V. P.; Berberova, N. T.; Albov, D. V.; Antonenko, T. A.; Aslanov, L. A.; Milaeva, E. R.; Hadjikakou, S. K. Synthesis, Antiradical Activity and in Vitro Cytotoxicity of Novel Organotin Complexes Based on 2,6-Di-Tert-Butyl-4-Mercaptophenol. Dalton Trans. 2014, 43, 6880–6890. DOI: 10.1039/c3dt53469c.
  • Sirajuddin, M.; Ali, S.; Shah, F.-A.; Ahmad, M.; Tahir, M.-N. Potential Bioactive Vanillin-Schiff Base di-and Tri-Organotin (IV) Complexes of 4-((3,5-Dimethylphenylimino) Methyl)-2-Methoxyphenol: Synthesis, Characterization and Biological Screenings. J. Iran. Chem. Soc. 2014, 11, 297–313. DOI: 10.1007/s13738-013-0301-x.
  • Bukhari, S.-B.; Memon, S.; Mahroof-Tahir, M.; Bhanger, M.-I. Synthesis, Characterization and Antioxidant Activity Copper–Quercetin Complex. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 71, 1901–1906. DOI: 10.1016/j.saa.2008.07.030.
  • Devi, J.; Yadav, J.; Singh, N. Synthesis, Characterisation, in Vitro Antimicrobial, Antioxidant and anti-Inflammatory Activities of Diorganotin(IV) Complexes Derived from Salicylaldehyde Schiff Bases. Res. Chem. Intermed. 2019, 45, 3943–3968. DOI: 10.1007/s11164-019-03830-3.
  • Devi, J.; Yadav, M.; Kumar, A.; Kumar, A. Synthesis, Characterization, Biological Activity, and QSAR Studies of Transition Metal Complexes Derived from Piperonylamine Schiff Bases. Chem. Pap. 2018, 72, 2479–2502. DOI: 10.1007/s11696-018-0480-0.
  • Devi, J.; Yadav, J.; Devi, S.; Kumar, A. Synthesis, Biological Activity and QSAR Studies of Organotin(IV) and Organosilicon(IV) Complexes. Chem. Select. 2019, 4, 4512–4520. DOI: 10.1002/slct.201900317.
  • Jain, M.; Maanju, S.; Singh, R. V. Synthesis, Structural Studies and Some Biological Aspects, Including Nematicidal and Insecticidal Properties, of Organotin(IV) Complexes Formed with Biologically Active Sulfonamide Imine Ligand. Appl. Organomet. Chem. 2004, 18, 471–479. DOI: 10.1002/aoc.711.
  • Selberg, S.; Rodima, T.; Lokov, M.; Tshepelevitsh, S.; Haljasorg, T.; Chhabra, S.; Kadam, S.-A.; Toom, L.; Vahur, S.; Leito, I. Synthesis and Properties of Highly Lipophilic Phosphazene Bases. Tetrahedron Lett. 2017, 58, 2098–2102. DOI: 10.1016/j.tetlet.2017.04.039.
  • Kumar, A.; Chauhan, S. Use of Simplified Molecular Input Line Entry System and Molecular Graph Based Descriptors in Prediction and Design of Pancreatic Lipase Inhibitors. Fut. Med. Chem. 2018, 10, 1603–1622. DOI: 10.4155/fmc-2018-0024.
  • Kumar, P.; Kumar, A. Monte Carlo Method Based QSAR Studies of Mer Kinase Inhibitors in Compliance with OECD Principles. Drug Res. (Stuttg) 2018, 68, 189–195. DOI: 10.1055/s-0043-119288.
  • Kumar, A.; Chauhan, S. Monte Carlo Method Based QSAR Modelling of Natural Lipase Inhibitors Using Hybrid Optimal Descriptors. SAR QSAR Environ. Res. 2017, 28, 179–197. DOI: 10.1080/1062936X.2017.1293729.
  • Kumar, A.; Chauhan, S. Use of the Monte Carlo Method for OECD Principles-Guided QSAR Modeling of SIRT1 Inhibitors. Arch. Pharm. Chem. Life Sci. 2017, 350, e1600268. DOI: 10.1002/ardp.201600268.
  • Vogel, A. I. Text Book of Quantitative Chemical Analysis, 5th ed.; Longmans, Edison, Wesley: London, 1999.
  • Marvin Sketch 18.24.0 © 1998-2018 Chem Axon Ltd. http://www.chemaxon.com.
  • Boyle, N.-M.-O.; Banck, M.; James, C.-A.; Morley, C.; Vandermeersch, T.; Hutchison, G.-R. Open Babel: An Open Chemical Toolbox. J. Cheminform. 2011, 3, 33–46. DOI: 10.1186/1758-2946-3-33.
  • Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S. QSARINS: A New Software for the Development, Analysis, and Validation of QSAR MLR Models. J. Comput. Chem. 2013, 34, 2121–2132. DOI: 10.1002/jcc.23361.
  • Gramatica, P.; Cassani, S.; Chirico, N. QSARINS-Chem: Insubria Datasets and New QSAR/QSPR Models for Environmental Pollutants in QSARINS. J. Comput. Chem. 2014, 35, 1036–1044. DOI: 10.1002/jcc.23576.
  • Braca, A.; Tommasi, N.-D.; Bari, L.-D.; Pizza, C.; Politi, M.; Morelli, I. Antioxidant Principles from Bauhinia Tarapotensis. J. Nat. Prod. 2001, 64, 892–895. DOI: 10.1021/np0100845.
  • Devi, J.; Devi, S.; Kumar, A. Synthesis, Spectral, and in Vitro Antimicrobial Studies of Organosilicon(IV) Complexes with Schiff Bases Derived from Dehydroacetic Acid. Monatsh. Chem. 2016, 147, 2195–2207. DOI: 10.1007/s00706-016-1720-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.