301
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Ultrasound-promoted, rapid and green synthesis of phosphonamide derivatives under catalyst and solvent-free conditions

, , &
Pages 422-430 | Received 04 Aug 2020, Accepted 18 Nov 2020, Published online: 14 Dec 2020

References

  • Phillips, D. R.; Uramoto, M.; Isono, K.; McCloskey, A. Structure of the Antifungal Nucleotide Antibiotic Phosmidosine. J. Org. Chem. 1993, 58, 854–859. DOI: 10.1021/jo00056a017.
  • (a) Roberts, W. P.; Tate, M. E.; Kerr, A. Agrocin 84 is a 6-N-Phosphoramidate of an Adenine Nucleotide Analogue. Nature. 1977, 265, 379–381. DOI: 10.1038/265379a0; (b) Tate, M. E.; Murphy, P. J.; Roberts, W. P.; Kerr, A. Adenine N6-Substituent of Agrocin 84 Determines its Bacteriocin-like Specificity. Nature. 1979, 280, 697–699. DOI: 10.1038/280697a0.
  • Guijarro, J. I.; González-Pastor, J. E.; Baleux, F.; Millán, J. L. S.; Castilla, M. A.; Rico, M.; Moreno, F.; Delepierre, M. Chemical Structure and Translation Inhibition Studies of the Antibiotic Microcin C7. J. Biol. Chem. 1995, 270, 23520–23532. DOI: 10.1074/jbc.270.40.23520.
  • Dousson, C. B. Current and Future Use of Nucleo(s)Tide Prodrugs in the Treatment of Hepatitis C Virus Infection. Antivir. Chem. Chemother. 2018, 26, 1–8. DOI: 10.1177/2040206618756430.
  • Sørensen, M. D.; Blaehr, L. K. A.; Christensen, M. K.; Høyer, T.; Latini, S.; Hjarnaa, P.-J. V.; Björkling, F. Cyclic Phosphinamides and Phosphonamides, Novel Series of Potent Matrix Metalloproteinase Inhibitors with Antitumour Activity. Bioorg. Med. Chem. 2003, 11, 5461–5484. DOI: 10.1016/j.bmc.2003.09.015.
  • Pikul, S.; McDow Dunham, K. L.; Almstead, N. G.; De, B.; Natchus, M. G.; Anastasio, M. V.; McPhail, S. J.; Snider, C. E.; Taiwo, Y. O.; Chen, L.; et al. Design and Synthesis of Phosphinamide-Based Hydroxamic Acids as Inhibitors of Matrix Metalloproteinases. J. Med. Chem. 1999, 42, 87–94. DOI: 10.1021/jm980142s.
  • Sawa, M.; Kiyoi, T.; Kurokawa, K.; Kumihara, H.; Yamamoto, M.; Miyasaka, T.; Ito, Y.; Hirayama, R.; Inoue, T.; Kirii, Y.; et al. New Type of Metalloproteinase Inhibitor: Design and Synthesis of New Phosphonamide-Based Hydroxamic Acids. J. Med. Chem. 2002, 45, 919–929. DOI: 10.1021/jm0103211.
  • Sawa, M.; Kondo, H.; Nishimura, S. Encounter with Unexpected Collagenase-1 Selective Inhibitor: Switchover of Inhibitor Binding Pocket Induced by Fluorine Atom. Bioorg. Med. Chem. Lett. 2002, 12, 581–584. DOI: 10.1016/s0960-894x(01)00796-x.
  • Sawa, M.; Kurokawa, K.; Inoue, Y.; Kondo, H.; Yoshino, K. Discovery of Selective Phosphonamide-Based Inhibitors of Tumor Necrosis Factor-Alpha Converting Enzyme (TACE). Bioorg. Med. Chem. Lett. 2003, 13, 2021–2024. DOI: 10.1016/s0960-894x(03)00292-0.
  • Hanson, P. R.; Stoianova, D. Ring Closing Metathesis Reactions on Phosphonamide and Phosphonate Templates. Phosphorus Sulfur Silicon Relat. Elem. 1999, 147, 107–108. DOI: 10.1080/10426509908053534.
  • Focken, T.; Hanessian, S. Application of Cyclic Phosphonamide Reagents in the Total Synthesis of Natural Products and Biologically Active Molecules. Beilstein J. Org. Chem. 2014, 10, 1848–1877. DOI: 10.3762/bjoc.10.195.
  • Hanessian, S. The Enterprise of Synthesis: From Concept to Practice. J. Org. Chem. 2012, 77, 6657–6688. DOI: 10.1021/jo300902m.
  • Hanessian, S.; Delorme, D.; Beaudoin, S.; Leblanc, Y. Design and Reactivity of Topologically Unique, Chiral Phosphonamides. Remarkable Diastereofacial Selectivity in Asymmetric Olefination and Alkylation. J. Am. Chem. Soc. 1984, 106, 5754–5756. DOI: 10.1021/ja00331a070.
  • Du Bois, J. Rhodium-Catalyzed C-H Amination – An Enabling Method for Chemical Synthesis. Org. Process Res. Dev. 2011, 15, 758–762. DOI: 10.1021/op200046v.
  • Clark, J. H. Green Chemistry: Today (and Tomorrow). Green Chem. 2006, 8, 17–21. DOI: 10.1039/B516637N.
  • Trost, B. The Atom Economy-a Search for Synthetic Efficiency. Science 1991, 254, 1471–1477. DOI: 10.1126/science.1962206.
  • Otmane Rachedi, K.; Tan-Sothea, O.; Bahadi, R.; Bouzina, A.; Djouad, S. E.; Bechlem, K.; Zerrouki, R.; Ben Hadda, T.; Almalki, F.; Berredjem, M. Synthesis, DFT and POM Analyses of Cytotoxicity Activity of α-Amidophosphonates Derivatives: Identification of Potential Antiviral O,O-Pharmacophore site. J. Mol. Struct. 2019, 1197, 196–203. DOI: 10.1016/j.molstruc.2019.07.053.
  • Belhani, B.; Bechlem, K.; Grib, I.; Cheloufi, H.; Berredjem, M. A Green, One-Pot, Three-Component and Microwave Assisted Synthesis of α-Sulfamidophosphonates. J. Mater. Environ. Sci. 2018, 9, 613–618. DOI: 10.26872/jmes.2018.9.2.67.
  • (a) Bouzina, A.; Belhani, B.; Aouf, N. E. Berredjem, M. A Novel, Rapid and Green Method of Phosphorylation Under Ultrasound Irradiation and Catalyst Free Conditions. RSC Adv. 2015, 5, 46272–46278. DOI: 10.1039/C5RA06380A; (b) Bouzina, A.; Berredjem, M.; Bouacida, S.; Merazig, H.; Aouf, N. E. A Greener Procedure for the Synthesis of Aureidophosphonates Under Ultrasound Irradiation. An X-ray Crystallographic Study. RSC Adv. 2015, 5, 99775–99780. DOI: 10.1039/c5ra19886k.
  • Belhani, B.; Bouzina, A.; Berredjem, M.; Aouf, N. E. One-Pot Synthesis of Novel Oxazaphosphinanes under Ultrasound Irradiation and Solvent-Free Conditions. Monatsh. Chem. 2015, 146, 1871–1875. DOI: 10.1007/s00706-015-1461-4.
  • Bouzina, A.; Aouf, N. E.; Berredjem, M. Ultrasound Assisted Green Synthesis of α-Hydroxyphosphonates under Solvent-Free Conditions. Res. Chem. Intermed. 2016, 42, 5993–6002. DOI: 10.1007/s11164-015-2420-8.
  • Belhani, B.; Berredjem, M.; Le Borgne, M.; Bouaziz, Z.; Lebreton, J.; Aouf, N. E. A One-Pot Three-Component Synthesis of Novel α-Sulfamidophosphonates under Ultrasound Irradiation and Catalyst-Free Conditions. RSC Adv. 2015, 5, 39324–39329. DOI: 10.1039/C5RA03473F.
  • Boufas, W.; Cheloufi, H.; Bouchareb, F.; Berredjem, M.; Aouf, N. E. Convenient Synthesis of Novel N-Acylsulfonamides Containing Phosphonate Moiety. Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 103–111. DOI: 10.1080/10426507.2014.931398.
  • Saib, A.; Berrebbah, H.; Djebar, M. R.; Berredjem, M. Cytotoxic Study of Three Derivatives Amidophosphonates on Alternative Cellular Model: Paramecium tetraurelia. Toxicol. Res. 2014, 3, 395. DOI: 10.1039/C4TX00033A.
  • Hessainia, S.; Berredjem, M.; Ouarna, S.; Cheraiet, Z.; Aouf, N. E. Efficient Synthesis of Modified Sulfamides and Cyclosulfamides Containing Phosphonate Moieties. Phosphorus Sulfur Silicon Relat. Elem. 2013, 188, 719–725. DOI: 10.1080/10426507.2012.700356.
  • Bouchareb, F.; Hessainia, S.; Berredjem, M.; Benbouzid, H.; Djebbar, H.; Aouf, N. E. Efficient Method for the Synthesis of Diazaphospholidines: Toxicological Evaluation. Asian J. Org. Chem. 2012, 2, 14–17. DOI: 10.5923/j.ajoc.20120201.03.
  • Bouchareb, F.; Berredjem, M.; Aouf, N. E. Synthesis and Spectroscopic Study of New Substituted Phosphoramidates and 1, 3, 2-Diazaphospholidine-2,5-Diones. Der PharmaChemica 2015, 7, 90–94.
  • Tye, H.; Eldred, C.; Wills, M. An Efficient Method for the Synthesis of N,N′-Dimethyl-1,2-Diamines. Tetrahedron Lett. 2002, 43, 155–158. DOI: 10.1016/S0040-4039(01)02054-8.
  • Ali, H. M.; Mostafa, A. A.; El-Zohry, M. F. Synthesis and Bioactivity of O-Ethyl Phosphorodiamidates Derived from Quinazolin-4-Ones and Either Amino Acid Esters or Fatty Amines. Heteroatom Chem. 1999, 10, 455–460. DOI: 10.1002/(SICI)1098-1071(1999)10:6<455::AID-HC3>3.0.CO;2-9.
  • Gholivand, K.; Della Vedova, C. O.; Erben, M. F.; Mahzouni, H. R.; Shariatinia, Z.; Amiri, S. Synthesis, Spectroscopic Study, X-Ray Crystallography and ab Initio Calculations of the Two New Phosphoramidates: C6H5OP(O)(NHC6H11)2 and [N(CH3)(C6H11)]P(O)(2-C5H4N-NH)2. J. Mol. Struct. 2008, 874, 178–186. DOI: 10.1016/j.molstruc.2007.03.047.
  • Tomoskozi, I.; Gacs-Bait, E.; Otvos, L. Stereospecific Conversion of H-Phosphonates into Phosphoramidates. The Use of Vicinal Carbon-Phosphorus Couplings for Configurational Determination of Phosphorus. Tetrahedron 1995, 51, 6797–6804. DOI: 10.1016/0040-4020(95)00313-w.
  • Nikolaides, N.; Ganem, B. New Chemistry of Amines. 2. A Convenient Synthesis of Phosphotriesters from Phosphoramidates. Tetrahedron Lett. 1990, 31, 1113–1116. DOI: 10.1016/S0040-4039(00)88739-0.
  • Gholivand, K.; Hariatinia, Z.; Pourayoubi, M. Syntheses, Spectroscopic Characterization and Crystal Structures of Some New Phosphoramidates and an Organotin(IV) Complex of N-(4-Fluorobenzoyl)-N′,N″-Bis(Piperidinyl)Phosphoric Triamide. Polyhedron 2006, 25, 711–721. DOI: 10.1016/j.poly.2005.07.035.
  • Gholivand, K.; Vedova, C. O. D.; Firooz, A. A.; Alizadehgan, A. M.; Michelini, M. C.; Diez, R. P. Pis Diezb, R. Syntheses, Crystal Structure and ab Initio Calculations of Two New Phosphoric Triamides. J. Mol. Struct. 2005, 750, 64–71. DOI: 10.1016/j.molstruc.2005.04.010.
  • Fu, N.; Zhang, Q.; Duan, L.; Xu, J. Facile Synthesis of Phosphonamidate- and Phosphonate-Linked Phosphonopeptides. J. Pept. Sci. 2006, 12, 303–309. DOI: 10.1002/psc.727.
  • Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice, Edition Oxford University Press: New York, 1998; pp 30.
  • Nasir Baig, R. B.; Varma, R. S. Alternative Energy Input: Mechanochemical, Microwave and Ultrasound-Assisted Organic Synthesis. Chem. Soc. Rev. 2012, 41, 1559–1584. DOI: 10.1039/c1cs15204a.
  • Mansouri, R.; Aouf, Z.; Lakrout, S.; Berredjem, M.; Aouf, N. E. Greener, Efficient and Catalyst-Free Ultrasonic-Assisted Protocol for the N-Fmoc Protection of Amines. J. Braz. Chem. Soc. 2016, 27, 546–550. DOI: 10.5935/0103-5053.20150286.
  • Matveeva, E. V.; Odinets, I. L.; Kozlov, V. A.; Shaplov, A. S.; Mastryukova, T. A. Ionic-Liquid-Promoted Michaelis-Arbuzov Rearrangement. Tetrahedron Lett. 2006, 47, 7645–7648. DOI: 10.1016/j.tetlet.2006.08.050.
  • Dmitriev, M. E.; Ragulin, V. V. Arbuzov-Type Reaction of Acylphosphonites and N-Alkoxycarbonylimine Cations Generated in Situ with Trifluoroacetic Anhydride. Tetrahedron Lett. 2012, 53, 1634–1636. DOI: 10.1016/j.tetlet.2012.01.094.
  • Yang, G.; Shen, C.; Zhang, L.; Zhang, W. Nickel-Catalyzed Arbuzov Reactions of Aryl Triflates with Triethyl Phosphite. Tetrahedron Lett. 2011, 52, 5032–5035. DOI: 10.1016/j.tetlet.2011.07.077.
  • Azizi, K.; Karimi, M.; Shaterian, H.-R.; Heydari, A. Ultrasound Irradiation for the Green Synthesis of Chromenes Using l-Arginine-Functionalized Magnetic Nanoparticles as a Recyclable Organocatalyst. RSC Adv. 2014, 4, 42220–42225. DOI: 10.1039/C4RA06198E.
  • Dandia, A.; Gupta, S.; Parewa, V. An Efficient Ultrasound-Assisted One-Pot Chemoselective Synthesis of Pyrazolo[3,4-b] Pyridine-5-Carbonitriles in Aqueous Medium Using NaCl as a Catalyst. RSC Adv. 2014, 4, 6908. DOI: 10.1039/c3ra47231k.
  • Jenck, J. F.; Agterberg, F.; Droescher, M. J. Products and Processes for a Sustainable Chemical Industry: A Review of Achievements and Prospects. Green Chem. 2004, 6, 544. DOI: 10.1039/b406854h.
  • Mason, T. J.; Peters, D. Practical Sonochemistry, Ellis Horwood: New York, 1991.
  • Luche, J. L. Synthetic Organic Sonochemistry, Plenum: New York, 1998; pp 167.
  • Mason, T. J. Sonochemistry and the Environment – Providing a “Green” Link Between Chemistry, Physics and Engineering. Ultrason. Sonochem. 2007, 14, 476–483. DOI: 10.1016/j.ultsonch.2006.10.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.