78
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Tris(2-thienyl)phosphine-substituted diiron propanedithiolate complexes: Synthesis, spectroscopy, crystal structures, electrochemistry, and fungicidal activity

, , , ORCID Icon, ORCID Icon & ORCID Icon
Pages 468-475 | Received 29 Jun 2020, Accepted 19 Nov 2020, Published online: 14 Dec 2020

References

  • Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. X-Ray Crystal Structure of the Fe-Only Hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom Resolution. Science 1998, 282, 1853–1857. DOI: 10.1126/science.282.5395.1853.
  • Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C. Desulfovibrio desulfuricans Iron Hydrogenase: The Structure Shows Unusual Coordination to an Active Site Fe Binuclear Center. Structure 1999, 7, 13–23. DOI: 10.1016/S0969-2126(99)80005-7.
  • Lyon, E. J.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Y. Carbon Monoxide and Cyanide Ligands in a Classical Organometallic Complex Model for Fe-Only Hydrogenase. Angew. Chem. Int. Ed. 1999, 38, 3178–3180. DOI: 10.1002/(SICI)1521-3773(19991102)38:21 < 3178::AID-ANIE3178 > 3.0.CO;2-4.
  • Cloirec, A. L.; Davies, S. C.; Evans, D. J.; Hughes, D. L.; Pickett, C. J.; Best, S. P.; Borg, S. A Di-Iron Dithiolate Possessing Structural Elements of the Carbonyl/Cyanide Sub-Site of the H-Centre of Fe-Only Hydrogenase. Chem. Commun. 1999, 2285–2286. DOI: 10.1039/a906391i.
  • Lawrence, J. D.; Li, H.; Rauchfuss, T. B. Beyond Fe-Only Hydrogenases: N-Functionalized 2-Aza-1,3-Dithiolates Fe2[(SCH2)2 NR](CO)x (x = 5, 6). Chem. Commun. 2001, 1482–1483. DOI: 10.1039/b104195a.
  • Li, H.; Rauchfuss, T. B. Iron Carbonyl Sulfides, Formaldehyde, and Amines Condense to Give the Proposed Azadithiolate Cofactor of the Fe-Only Hydrogenases. J. Am. Chem. Soc. 2002, 124, 726–727. DOI: 10.1021/ja016964n.
  • Fan, H. J.; Hall, M. B. A Capable Bridging Ligand for Fe-Only Hydrogenase: Density Functional Calculations of a Low-Energy Route for Heterolytic Cleavage and Formation of Dihydrogen. J. Am. Chem. Soc. 2001, 123, 3828–3829. DOI: 10.1021/ja004120i.
  • Camara, J. M.; Rauchfuss, T. B. Mild Redox Complementation Enables H2 Activation by [FeFe]-Hydrogenase Models. J. Am. Chem. Soc. 2011, 133, 8098–8101. DOI: 10.1021/ja201731q.
  • Boyke, C. A.; Rauchfuss, T. B.; Wilson, S. R.; Rohmer, M. M.; Bénard, M. [[Fe2(SR)2(mu-CO)(CNMe)6]2+ and Analogues: A New Class of Diiron Dithiolates as Structural Models for the H(ox) Air State of the Fe-only Hydrogenase. J. Am. Chem. Soc. 2004, 126, 15151–15160. DOI: 10.1021/ja049050k.
  • Wang, N.; Wang, M.; Wang, Y.; Zheng, D.; Han, H.; Ahlquist, M. S. G.; Sun, L. Catalytic Activation of H2 under Mild Conditions by an [FeFe]-Hydrogenase Model via an Active μ-hydride species. J. Am. Chem. Soc. 2013, 135, 13688–13691. DOI: 10.1021/ja408376t.
  • Lyon, E. J.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Y. Coordination Sphere Flexibility of Active-Site Models for Fe-Only Hydrogenase: Studies in Intra- and Intermolecular Diatomic Ligand Exchange. J. Am. Chem. Soc. 2001, 123, 3268–3278. DOI: 10.1021/ja003147z.
  • Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E. Hydrogenases. Chem. Rev. 2014, 114, 4081–4148. DOI: 10.1021/cr4005814.
  • Schilter, D.; Camara, J. M.; Huynh, M. T.; Hammes-Schiffer, S.; Rauchfuss, T. B. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. Chem. Rev. 2016, 116, 8693–8749. DOI: 10.1021/acs.chemrev.6b00180.
  • Simmons, T. R.; Berggren, G.; Bacchi, M.; Fontecave, T. R.; Artero, V. Mimicking Hydrogenases: From Biomimetics to Artificial Enzymes. Coord. Chem. Rev. 2014, 270271, 127–150. DOI: 10.1016/j.ccr.2013.12.018.
  • Ghosh, S.; Rana, S.; Hollingsworth, N.; Richmond, M. G.; Kabir, S. E.; Hogarth, G. Hydrogenase Biomimetics with Redox-Active Ligands: Synthesis, Structure, and Electrocatalytic Studies on [Fe2(CO)4(κ2-Dppn)(μ-Edt)] (Edt = Ethanedithiolate; Dppn = 1,8-Bis(Diphenylphosphino)Naphthalene. Inorganics 2018, 6, 122–135. DOI: 10.3390/inorganics6040122.
  • Zhao, P.-H.; Ma, Z.-Y.; Hu, M.-Y.; He, J.; Wang, Y.-Z.; Jing, X.-B.; Chen, H.-Y.; Wang, Z.; Li, Y.-L. PNP-Chelated and -Bridged Diiron Dithiolate Complexes Fe2(μ-Pdt)(CO)4{(Ph2P)2NR} Together with Related Monophosphine Complexes for the [2Fe]H Subsite of [FeFe]-Hydrogenases: Preparation, Structure, and Electrocatalysis. Organometallics 2018, 37, 1280–1290. DOI: 10.1021/acs.organomet.8b00030.
  • Zhao, P. H.; Hu, M. Y.; Ma, Z. Y.; Li, J. R.; Wang, Y. Z.; He, J.; Li, Y. L.; Liu, X. F. Influence of Dithiolate Bridges on the Structures and Electrocatalytic Performance of Small Bite-Angle PNP-Chelated Diiron Complexes Fe2(μ-Xdt)(CO)4{κ2‐(Ph2P)2NR} Related to [FeFe]-Hydrogenases. Organometallics 2019, 38, 385–394. DOI: 10.1021/acs.organomet.8b00759.
  • Carlson, M. R.; Gray, D. L.; Richers, C. P.; Wang, W.; Zhao, P.-H.; Rauchfuss, T. B.; Pelmenschikov, V.; Pham, C. C.; Gee, L. B.; Wang, H.; Cramer, S. P. Sterically Stabilized Terminal Hydride of a Diiron Dithiolate. Inorg. Chem. 2018, 57, 1988–2001. DOI: 10.1021/acs.inorgchem.7b02903.
  • Abul-Futouh, H.; Almazahreh, L. R.; Harb, M. K.; Görls, H.; El-Khateeb, M.; Weigand, W. [ [FeFe]-Hydrogenase H-Cluster Mimics with Various -S(CH2)nS- Linker Lengths (n = 2-8): A Systematic Study. Inorg. Chem. 2017, 56, 10437–10451. DOI: 10.1021/acs.inorgchem.7b01398.
  • Merinero, A. D.; Collado, A.; Casarrubios, L.; Gómez-Gallego, M.; Ramírez de Arellano, C.; Caballero, A.; Zapata, F.; Sierra, M. A. Triazole-Containing [FeFe] Hydrogenase Mimics: Synthesis and Electrocatalytic Behavior. Inorg. Chem. 2019, 58, 16267–16278. DOI: 10.1021/acs.inorgchem.9b02813.
  • Pathirana, K. D. K.; Ghosh, P.; Hsieh, C. H.; Elrod, L. C.; Bhuvanesh, N.; Darensbourg, D. J.; Darensbourg, M. Y. Synthetic Metallodithiolato Ligands as Pendant Bases in [FeIFeI], [FeI[Fe(NO)]II], and [(μ-H)FeIIFeII] Complexes. Inorg. Chem. 2020, 59, 3753–3763. DOI: 10.1021/acs.inorgchem.9b03409.
  • Abul-Futouh, H.; Skabeev, A.; Botteri, D.; Zagranyarski, Y.; Görls, H.; Weigand, W.; Peneva, K. Toward a Tunable Synthetic [FeFe]-Hydrogenase H‐Cluster Mimic Mediated by Perylene Monoimide Model Complexes: Insight into Molecular Structures and Electrochemical Characteristics. Organometallics 2018, 37, 3278–3285. DOI: 10.1021/acs.organomet.8b00450.
  • Mejia-Rodriguez, R.; Chong, D.; Reibenspies, J. H.; Soriaga, M. P.; Darensbourg, M. Y. The Hydrophilic Phosphatriazaadamantane Ligand in the Development of H2 Production Electrocatalysts: Iron Hydrogenase Model Complexes. J. Am. Chem. Soc. 2004, 126, 12004–12014. DOI: 10.1021/ja039394v.
  • Georgakaki, I. P.; Miller, M. L.; Darensbourg, M. Y. Requirements for Functional Models of the Iron Hydrogenase Active Site: D2/H2O Exchange Activity in ((mu-SMe)(mu-pdt)[Fe(CO)2(PMe3)]2+)[BF4-]. Inorg. Chem. 2003, 42, 2489–2494. DOI: 10.1021/ic026005.
  • Gao, W.; Ekström, J.; Liu, J.; Chen, C.; Eriksson, L.; Weng, L.; Åkermark, B.; Sun, L. Binuclear Iron-Sulfur Complexes with Bidentate Phosphine Ligands as Active Site Models of Fe-Hydrogenase and Their Catalytic Proton Reduction. Inorg. Chem. 2007, 46, 1981–1991. DOI: 10.1021/ic0610278.
  • Ghosh, S.; Hogarth, G.; Hollingsworth, N.; Holt, K. B.; Richard, I.; Richmond, M. G.; Sanchez, B. E.; Unwin, D. Models of the Iron-Only Hydrogenase: A Comparison of Chelate and Bridge Isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-Pdt) as Proton-Reduction Catalysts. Dalton Trans. 2013, 42, 6775–6792. DOI: 10.1039/c3dt50147g.
  • Ghosh, S.; Hollingsworth, N.; Warren, M.; Hrovat, D. A.; Richmond, M. G.; Hogarth, G. Hydrogenase Biomimics Containing Redox-Active Ligands: Fe2(CO)4(μ-edt)(κ2-BPCD) with Electron-Acceptor 4,5-Bis(Diphenylphosphino)-4-Cyclopenten-1,3-Dione (BPCD) as a Potential [Fe4-S4]H Surrogate. Dalton Trans. 2019, 48, 6051–6060. DOI: 10.1039/c8dt04906h.
  • Unwin, D. G.; Ghosh, S.; Ridley, F.; Richmond, M. G.; Holt, K. B.; Hogarth, G. Models of the Iron-Only Hydrogenase Enzyme: Structure, Electrochemistry and Catalytic Activity of Fe2(CO)3(μ-Dithiolate)(μ,κ1,κ2-Triphos). Dalton Trans. 2019, 48, 6174–6190. DOI: 10.1039/c9dt00700h.
  • Mu, J. X.; Shi, Y. X.; Yang, M. Y.; Sun, Z. H.; Liu, X. H.; Li, B. J.; Sun, N. B. Design, Synthesis, DFT Study and Antifungal Activity of Pyrazolecarboxamide Derivatives. Molecules 2016, 21, 68–78. DOI: 10.3390/molecules21010068.
  • Chen, F. Y.; He, J.; Yu, X. Y.; Wang, Z.; Mu, C.; Liu, X. F.; Li, Y. L.; Jiang, Z. Q.; Wu, H. K. Electrocatalytic Properties of Diiron Ethanedithiolate Complexes Containing Benzoate Ester. Appl. Organomet. Chem. 2018, 32, e4549. DOI: 10.1002/aoc.4549.
  • Lin, H. M.; Li, J. R.; Mu, C.; Li, A.; Liu, X. F.; Zhao, P. H.; Li, Y. L.; Jiang, Z. Q.; Wu, H. K. Synthesis, Characterization, and Electrochemistry of Monophosphine‐Containing Diiron Propane‐1,2‐Dithiolate Complexes Related to the Active Site of [FeFe]-Hydrogenases. Appl. Organomet. Chem. 2019, 33, e5196. DOI: 10.1002/aoc.5196.
  • Chen, F. Y.; He, J.; Mu, C.; Liu, X. F.; Li, Y. L.; Jiang, Z. Q.; Wu, H. K. Synthesis and Characterization of Five Diiron Ethanedithiolate Complexes with Acetate Group and Phosphine Ligands. Polyhedron 2019, 160, 74–82. DOI: 10.1016/j.poly.2018.12.027.
  • Zhang, Q. Q.; Dickson, R. S.; Fallon, G. D.; Mayadunne, R. A Comparison of the Reactions of Pentacarbonyliron with Cyclic Thioethers and Related Dialkyl Sulfides. J. Organomet. Chem. 2001, 627, 201–205. DOI: 10.1016/S0022-328X(01)00733-1.
  • Zhao, P. H.; Li, X. H.; Liu, Y. F.; Liu, Y. Q. Facile Synthesis, X-Ray Analysis, and Spectroscopic Studies of Di-Iron Propanedithiolate Complexes with Tris(Aromatic) Phosphine Ligands. J. Coord. Chem. 2014, 67, 766–778. DOI: 10.1080/00958972.2014.903329.
  • He, J.; Deng, C.-L.; Li, Y.; Li, Y.-L.; Wu, Y.; Zou, L.-K.; Mu, C.; Luo, Q.; Xie, B.; Wei, J.; et al. A New Route to the Synthesis of Phosphine-Substituted Diiron Aza- and Oxadithiolate Complexes. Organometallics 2017, 36, 1322–1330. DOI: 10.1021/acs.organomet.7b00040.
  • Wang, Z.; He, J.; Lü, S.; Jiang, W.; Wu, Y.; Jiang, J.; Xie, Y.; Mu, C.; Li, A.; Li, Y. L.; et al. Monophosphine‐Substituted Diiron Azadithiolate Complexes: New Syntheses, Characterization and Electrochemical Properties. Appl. Organomet. Chem. 2019, 33, e5184. DOI: 10.1002/aoc.5184.
  • Yan, L.; Li, A.; Xiao, Q. M.; Liu, X. F.; Li, Y. L.; Jiang, Z. Q.; Wu, H. K. Synthesis and Characterization of Diiron Ethane‐1,2‐Dithiolate Complexes with Tricyclohexylphosphine, Methyl Diphenylphosphinite, or Tris(2‐Thienyl)Phosphine Coligands. Transit. Met. Chem. 2019, 44, 483–489. DOI: 10.1007/s11243-019-00339-x.
  • Hu, M. Y.; Yan, L.; Li, J. R.; Wang, Y. H.; Zhao, P. H.; Liu, X. F. Reactions of Fe2(μ‐Odt)(CO)6 (Odt = 1, 3‐Oxadithiolate) with Small Bite‐Angle Diphosphines to Afford the Monodentate, Chelate, and Bridge Diiron Complexes: Selective Substitution, Structures, Protonation, and Electrocatalytic Proton Reduction. Appl. Organomet. Chem. 2019, 33, e4949. DOI: 10.1002/aoc.4949.
  • Hu, M. Y.; Zhao, P. H.; Li, J. R.; Gu, X. L.; Jing, X. B.; Liu, X. F. Synthesis, Structures, and Electrocatalytic Properties of Phosphine-Monodentate, −Chelate, and -Bridge Diiron 2,2-Dimethylpropanedithiolate Complexes Related to [FeFe]-Hydrogenases. Appl. Organomet. Chem. 2020, 34, e5523. DOI: 10.1002/aoc.5523.
  • Li, R. X.; Liu, X. F.; Liu, T.; Yin, Y. B.; Zhou, Y.; Mei, S. K.; Yan, J. Electrocatalytic Properties of [FeFe]-Hydrogenases Models and Visible-Light-Driven Hydrogen Evolution Efficiency Promotion with Porphyrin Functionalized Graphene Nanocomposite. Electrochim. Acta 2017, 237, 207–216. DOI: 10.1016/j.electacta.2017.03.216.
  • Lin, H. M.; Li, A.; Xiao, Q. M.; Liu, X. F.; Li, Y. L.; Liu, X. H.; Jiang, Z. Q. Synthesis, Characterization and Electrochemistry of 1,2-Bis(Diphenylphosphino)benzene-Chelated Diiron Ethane-1,2-Dithiolate Tetracarbonyl Complex. Chin. J. Struct. Chem. 2020, 39, 927–932. DOI: 10.14102/j.cnki.0254-5861.2011-2502.
  • Ezzaher, S.; Capon, J. F.; Gloaguen, F.; Pétillon, F. Y.; Schollhammer, P.; Talarmin, J.; Kervarec, N. Influence of a Pendant Amine in the Second Coordination Sphere on Proton Transfer at a Dissymmetrically Disubstituted Diiron System Related to the [2Fe]H Subsite of [FeFe]H2ase. Inorg. Chem. 2009, 48, 2–4. DOI: 10.1021/ic801369u.
  • Ghosh, S.; Hogarth, G.; Hollingsworth, N.; Holt, K. B.; Kabir, S. E.; Sanchez, B. E. Hydrogenase Biomimetics: Fe2(CO)4(μ-dppf)(μ-pdt) (dppf = 1,1'-Bis(Diphenylphosphino)Ferrocene) both a Proton-Reduction and Hydrogen Oxidation Catalyst. Chem. Commun. (Camb) 2014, 50, 945–947. DOI: 10.1039/c3cc46456c.
  • Chong, D.; Georgakaki, I. P.; Mejia-Rodriguez, R.; Sanabria-Chinchilla, J.; Soriaga, M. P.; Darensbourg, M. Y. Electrocatalysis of Hydrogen Production by Active Site Analogues of the Iron Hydrogenase Enzyme: Structure/Function Relationships. Dalton Trans. 2003, 4158–4163. DOI: 10.1039/B304283A.
  • Zhao, P. H.; Hu, M. Y.; Li, J. R.; Wang, Y. Z.; Lu, B. P.; Han, H. F.; Liu, X. F. Impacts of Coordination Modes (Chelate versus Bridge) of PNP-Diphosphine Ligands on the Redox and Electrocatalytic Properties of Diiron Oxadithiolate Complexes for Proton Reduction. Electrochim. Acta 2020, 353, 136615. DOI: 10.1016/j.electacta.2020.136615.
  • Gloaguen, F.; Lawrence, J. D.; Rauchfuss, T. B. Biomimetic Hydrogen Evolution Catalyzed by an Iron Carbonyl Thiolate. J. Am. Chem. Soc. 2001, 123, 9476–9477. DOI: 10.1021/ja016516f.
  • Zaffaroni, R.; Rauchfuss, T. B.; Gray, D. L.; De Gioia, L.; Zampella, G. Terminal vs Bridging Hydrides of Diiron Dithiolates: Protonation of Fe2(Dithiolate)(CO)2(PMe3)4. J. Am. Chem. Soc. 2012, 134, 19260–19269. DOI: 10.1021/ja3094394.
  • Li, Q. L.; Zhang, R. F.; Ma, C. L.; Lü, S.; Mu, C.; Li, Y. L. Synthesis, Characterization, and Some Electrocatalytic Properties of Heteromultinuclear FeI/RuII Clusters. Appl. Organomet. Chem. 2020, 34, e5461. DOI: 10.1002/aoc.5461.
  • Lü, S.; Zhang, R. F.; Li, Q. L.; He, J.; Li, Y. L. Synthesis, Characterization and Electrochemical Properties of Two Isomers of Diiron Diselenolato Complexes and a New Pathway to the μ4-Se Twin Cluster. J. Organomet. Chem. 2018, 873, 66–72. DOI: 10.1016/j.jorganchem.2018.08.003.
  • Zhao, P. H.; Li, J. R.; Gu, X. L.; Jing, X. B.; Liu, X. F. Diiron and Trinuclear NiFe2 Dithiolate Complexes Chelating by PCNCP Ligands: Synthetic Models of [FeFe]- and [NiFe]-Hydrogenases. J. Inorg. Biochem. 2020, 210, 111126. DOI: 10.1016/j.jinorgbio.2020.111126.
  • Lü, S.; Huang, H. L.; Zhang, R. F.; Ma, C. L.; Li, Q. L.; He, J.; Yang, J.; Li, T.; Li, Y. L. Phosphine-Substituted Fe-Te Clusters Related to the Active Site of [FeFe]-H2ases. Inorg. Chem. Front. 2020, 7, 2352–2361. DOI: 10.1039/D0QI00276C.
  • Liu, X. H.; Qiao, L.; Zhai, Z. W.; Cai, P. P.; Cantrell, C. L.; Tan, C. X.; Weng, J. Q.; Han, L.; Wu, H. K. Novel 4-Pyrazole Carboxamide Derivatives Containing Flexible Chain Motif: Design, Synthesis and Antifungal activity. Pest Manag. Sci. 2019, 75, 2892–2900. DOI: 10.1002/ps.5463.
  • Liu, X.-H.; Yu, W.; Min, L.-J.; Wedge, D. E.; Tan, C.-X.; Weng, J.-Q.; Wu, H.-K.; Cantrell, C. L.; Bajsa-Hirschel, J.; Hua, X.-W.; et al. Synthesis and Pesticidal Activities of New Quinoxalines. J. Agric. Food Chem. 2020, 68, 7324–7332. DOI: 10.1021/acs.jafc.0c01042.
  • APEX2, Version 2009.7-0, Bruker AXS, Inc., Madison, WI, 2007.
  • Sheldrick, G. M. SADABS: Program for Absorption Correction of Area Detector Frames; Bruker AXS Inc.: Madison, WI, 2001.
  • Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. DOI: 10.1107/S0021889808042726.
  • Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. A 2008, 64, 112–122. DOI: 10.1107/S0108767307043930.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.