187
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Optimization and modeling of Pb(II) adsorption from aqueous solution onto phosphogypsum by application of response surface methodology

, , , , &
Pages 521-529 | Received 17 Sep 2020, Accepted 03 Dec 2020, Published online: 17 Dec 2020

References

  • Amarasinghe, B.; Williams, R. Tea Waste as a Low Cost Adsorbent for the Removal of Cu and Pb from Wastewater. Chem. Eng. J. 2007, 132, 299–309. [Database] DOI: 10.1016/j.cej.2007.01.016.
  • Chen, B.; Wang, M.; Duan, M.; Ma, X.; Hong, J.; Xie, F.; Zhang, R.; Li, X. In Search of Key: Protecting Human Health and the Ecosystem from Water Pollution in China. J. Clean. Prod. 2019, 228, 101–111. DOI: 10.1016/j.jclepro.2019.04.228.
  • Mohammadi, S. Z.; Karimi, M. A.; Afzali, D.; Mansouri, F. Removal of Pb(II) from Aqueous Solutions Using Activated Carbon from Sea-Buckthorn Stones by Chemical Activation. Desalination 2010, 262, 86–93. DOI: 10.1016/j.desal.2010.05.048.
  • Axtell, N. R.; Sternberg, S. P.; Claussen, K. Lead and Nickel Removal Using Microspora and Lemna Minor. Bioresour. Technol. 2003, 89, 41–48. DOI: 10.1016/S0960-8524(03)00034-8.
  • Das, A.; Bar, N.; Das, S. K. Pb(II) Adsorption from Aqueous Solution by Nutshells, Green Adsorbent: Adsorption Studies, Regeneration Studies, Scale-up Design, Its Effect on Biological Indicator and MLR Modeling. J. Colloid Interface Sci. 2020, 580, 245–255. DOI: 10.1016/j.jcis.2020.07.017.
  • Rashid, M. N. Lead Removal from Contaminated Water Using Mineral Adsorbent. Environmentalist 2001, 21, 187–195. DOI: 10.1023/A:1017931404249.
  • Mousa, S. M.; Ammar, N. S.; Ibrahim, H. A. Removal of Lead Ions Using Hydroxyapatite Nano-Material Prepared from Phosphogypsum Waste. J. Saudi Chem. Soc. 2016, 20, 357–365. DOI: 10.1016/j.jscs.2014.12.006.
  • Xue, Y.; Hou, H.; Zhu, S. Competitive Adsorption of Copper (II), Cadmium (II), Lead (II) and Zinc (II) onto Basic Oxygen Furnace Slag. J. Hazard. Mat. 2009, 162, 391–401. DOI: 10.1016/j.jhazmat.2008.05.072.
  • Shi, W. Y.; Shao, H. B.; Li, H.; Shao, M. A.; Du, S. Progress in the Remediation of Hazardous Heavy Metal-Polluted Soils by Natural Zeolite. J. Hazard. Mater. 2009, 170, 1–6. DOI: 10.1016/j.jhazmat.2009.04.097.
  • Mouflih, M.; Aklil, A.; Jahroud, N.; Gourai, M.; Sebti, S. Removal of Lead from Aqueous Solutions by Natural Phosphate. Hydrometallurgy 2006, 81, 219–225. DOI: 10.1016/j.hydromet.2005.12.011.
  • Djedidi, Z.; Bouda, M.; Souissi, M. A.; Cheikh, R. B.; Mercier, G.; Tyagi, R. D.; Blais, J.-F. Metals Removal from Soil, Fy Ash and Sewage Sludge Leachates by Precipitation and Dewatering Properties of the Generated Sludge. J. Hazard. Mater. 2009, 172, 1372–1382. DOI: 10.1016/j.jhazmat.2009.07.144.
  • Sanati, A. M.; Kamari, S.; Ghorbani, F. Application of Response Surface Methodology for Optimization of Cadmium Adsorption from Aqueous Solutions by Fe3O4 @SiO2@APTMS Core–Shell Magnetic Nanohybrid. Surf. Interfaces 2019, 17, 100374. DOI: 10.1016/j.surfin.2019.100374.
  • Naiya, T. K.; Bhattacharya, A. K.; Das, S. K. Adsorption of Cd(II) and Pb(II) from Aqueous Solutions on Activated Alumina. J. Colloid Interface Sci. 2009, 333, 14–26. DOI: 10.1016/j.jcis.2009.01.003.
  • Naiya, T. K.; Bhattacharya, A. K.; Mandal, S.; Das, S. K. The Sorption of Lead(II) Ions on Rice Husk Ash. J. Hazard. Mater. 2009, 163, 1254–1264. DOI: 10.1016/j.jhazmat.2008.07.119.
  • Shahnaz, T.; Sharma, V.; Subbiah, S.; Narayanasamy, S. Multivariate Optimisation of Cr(VI), Co(III) and Cu(II) Adsorption onto Nanobentonite Incorporated Nanocellulose/Chitosan Aerogel Using Response Surface Methodology. J. Water Process Eng. 2020, 36, 101283. DOI: 10.1016/j.jwpe.2020.1012.
  • Islam, M.; Patel, R. Removal of Lead (II) from Aqueous Environment by a fibrous Ion Exchanger: Polycinnamamide Thorium (IV) Phosphate. J. Hazard. Mater. 2009, 172, 707–715. DOI: 10.1016/j.jhazmat.2009.07.057.
  • Bohli, T.; Ouederni, A.; Fiol, N.; Villaescusa, I. Evaluation of an Activated Carbon from Olive Stones Used as an Adsorbent for Heavy Metal Removal from Aqueous Phases. C. R. Chim. 2015, 18, 88–99. DOI: 10.1016/j.crci.2014.05.009.
  • Nejadshafiee, V.; Islami, M. R. Adsorption Capacity of Heavy Metal Ions Using Sultone-Modified Magnetic Activated Carbon as a Bio-Adsorbent. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 101, 42–52. DOI: 10.1016/j.msec.2019.03.081.
  • Hong, V.; Yu, L.; Wang, Y.; Zhang, J.; Chen, Z.; Dong, L.; Zan, Q.; Li, R. Heavy Metal Adsorption with Zeolites: The Role of Hierarchical Pore Architecture. Chem. Eng. J. 2019, 3591, 363–372. DOI: 10.1016/j.cej.2018.11.087.
  • Bailey, S. E.; Olin, T. J.; Bricka, R. M.; Adrian, D. D. A Review of Potentially Low-Cost Sorbents for Heavy Metals. Water Res. 1999, 33, 2469–2479. [Database] DOI: 10.1016/S0043-1354(98)00475-8.
  • Ahluwalia, S. S.; Goyal, D. Microbial and Plant Derived Biomass for Removal of Heavy Metals from Wastewater. Bioresour. Technol. 2007, 98, 2243–2257. DOI: 10.1016/j.biortech.2005.12.006.
  • Singha, B.; Bar, N.; Das, S. K. The Use of Artificial Neural Network (ANN) for Modeling of Pb(II) Adsorption in Batch Process. J. Mol. Liq. 2015, 211, 228–232. DOI: 10.1016/j.molliq.2015.07.002.
  • Cegłowski, M.; Gierczyk, B.; Frankowski, M.; Popenda, Ł. A New Low Cost Polymeric Adsorbents with Polyamine Chelating Groups for Efficient Removal of Heavy Metal Ions from Water Solutions. React. Functional. Polym. 2018, 131, 64–74. DOI: 10.1016/j.reactfunctpolym.2018.07.006.
  • Li, K.; Li, J.; Zhao, N.; Di, B.; Ma, Y.; Xu, L. Synthesis, Crystal Structures and Properties of Five Novel Coordination Polymers and Application in Removing Heavy Metals from Water. Inorg. Chim. Acta 2020, 507, 119598. DOI: 10.1016/j.ica.2020.119598.
  • Naiya, T. K.; Bhattacharya, A. K.; Das, S. K. Clarified Sludge (Basic Oxygen Furnace Sludge) – An Adsorbent for Removal of Pb(II) From Aqueous Solutions-Kinetics, Thermodynamics and Desorption Studies. J. Hazard. Mater. 2009, 170, 252–262. DOI: 10.1016/j.jhazmat.2009.04.103.
  • Chafik, D.; Bchitou, R.; Bouhaouss, A. Modélisation de l’adsorption des métaux lourds sur le phosphogypse. International Book, service Mtd. Editions Universités Européennes. ISBN: 978-620-2 28245-1. 2018.
  • Rashad, A. M. Phosphogypsum as a Construction Material. J. Clean. Prod. 2017, 166, 732–743. DOI: 10.1016/j.jclepro.2017.08.049.
  • Bing, W.; Guoqi, L.; Xinqing, L.; Bin, G.; Ling, L.; Taoze, L.; Xueyang, Z.; Yulin, Z. Phosphogypsum as a Novel Modifier for Distillers Grains Biochar Removal of Phosphate from Water. Chemosphere 2020, 238, 124684. DOI: 10.1016/j.chemosphere.2019.124684.
  • Lamzougui, G.; Nafai, H.; Chafik, D.; Bouhaouss, A.; Bchitou, R. Adsorption of Lead (II) onto Phosphogypsum from Liquid Effluents. Der. Pharma Chem. 2017, 9, 109–113.
  • Hagag, M. S.; Morsy, A. M. A.; Ali, A. H.; El-Shiekh, A. S. Adsorption of Rare Earth Elements onto the Phosphogypsum a Waste Byproduct. Water Air Soil Pollut. 2019, 230, 308. DOI: 10.1007/s11270-019-4362-z.
  • Bchitou, R.; Hamad, M.; Lacout, J. L.; Ferhat, M. Effets du cadmium sur la formation du phosphogypse lors de la production de l'acide phosphorique. Phosphorus Sulfur Silicon Relat. Elem. 1998, 139, 147–162. DOI: 10.1080/10426509808035684.
  • Es-Said, A.; Nafai, H.; El Hamdaoui, L.; Bouhaouss, A.; Bchitou, R. Adsorptivity and Selectivity of Heavy Metals Cd(II), Cu(II) and Zn(II) toward Phosphogypsum. DWT. 2020, 197, 291–299. DOI: 10.5004/dwt.2020.25964.
  • Chafik, D.; Bchitou, R.; Bouhaouss, A. Modeling and Optimization of Adsorption and Removal of Cd(II) from Aqueous Solution by Phosphogypsum. Asian J. Chem. 2014, 26, 8589–8592. DOI: 10.14233/ajchem.2014.18389.
  • Cesur, H.; Balkaya, N. Zinc Removal from Aqueous Solution Using an Industrial By-Product Phosphogypsum. Chem. Eng. J. 2007, 131, 203–208. [Database] DOI: 10.1016/j.cej.2006.11.010.
  • Rakhym, A. B.; Seilkhanova, G. A.; Kurmanbayeva, T. S. Adsorption of Lead (II) Ions from Water Solutions with Natural Zeolite and Chamotte Clay. Mater. Today 2020, 31, 482–485. DOI: 10.1016/j.matpr.2020.05.672.
  • Joseph, I. V.; Tosheva, L.; Doyle, A. M. Simultaneous Removal of Cd(II), Co(II), Cu(II), Pb(II), and Zn(II) Ions from Aqueous Solutions via Adsorption on FAU-Type Zeolites Prepared from Coal fly Ash. J. Environ. Chem. Eng. 2020, 8, 103895. DOI: 10.1016/j.jece.2020.103895.
  • Rajković, M. B.; Tošković, D. V. Phosphogypsum Surface Characterisation Using Scanning Electron Microscopy. Acta Period. Technol. 2003, 34, 61–70. DOI: 10.2298/APT0334061R.
  • El-Didamony, H.; Gado, H. S.; Awwad, N. S.; Fawzy, M. M.; Attallah, M. F. Treatment of Phosphogypsum Waste Produced from Phosphate Ore Processing. J. Hazard. Mater. 2013, 244–245, 596– 602. DOI: 10.1016/j.jhazmat.2012.10.053.
  • Balkaya, N.; Cesur, H. Adsorption of Cadmium from Aqueous Solution by Phosphogypsum. Chem. Eng. J. 2008, 140, 247–254. DOI: 10.1016/j.cej.2007.10.002.
  • Lagergreen, S. About the Theory of So-Called Adsorption of Soluble Substances, Zur theorie der sogenannten adsorption gel? ster stoffe, K. Sven. Vetensk. Akad. Handl. 1898, 24, 1–39.
  • Ho, Y. S. Citation Review of Lagergreen Kinetic Rate Equation on Adsorption Reaction. Scientometrics 2004, 59, 171–177. DOI: 10.1023/B:SCIE.0000013305.99473.cf.
  • Ho, Y. S.; McKay, G. Sorption of Dye from Aqueous Solution by Peat. J. Chem. Eng. 1998, 70, 115–124. DOI: 10.1016/S1385-8947(98)00076-X.
  • Aliyu, A. Synthesis, Electron Microscopy Properties and Adsorption Studies of Zinc (II) Ions (Zn2+) onto as-Prepared Carbon Nanotubes (CNTs) Using Box–Behnken Design (BBD. Sci. African 2019, 3, e00069. DOI: 10.1016/j.sciaf.2019.e00069.
  • Bchitou, R.; Hamad, M.; Lacout, J. L.; Ferhat, M. Modelling and Optimization of Cadmium from Wet-Process Phosphoric Acid. Phosphorus Sulfur Silicon Relat. Elem. 1996, 119, 193–199. DOI: 10.1080/10426509608043477.
  • Dean, A.; Voss, D.; Draguljić, D. Design and Analysis of Experiments, 2nd ed.; Springer International Publishing: New York, 2017. DOI: 10.1007/978-3-319-52250-0.
  • El Hamdaoui, L.; Es‐Said, A.; El Marouani, M.; El Bouchti, M.; Bchitou, R.; Kifani‐Sahban, F.; El Moussaouiti, M. Tosylation Optimization, Characterization and Pyrolysis Kinetics of Cellulose Tosylate. ChemistrySelect 2020, 5, 7695–7703. DOI: 10.1002/slct.202001906.
  • Es-Said, A.; El Hamdaoui, L.; El Moussaouiti, M.; Bchitou, R. Esterification Optimization of Cellulose with p-Iodobenzoyl Chloride Using Experimental Design Method. J. Polym. Res. 2019, 26, 237–245. DOI: 10.1007/s10965-019-1862-x.
  • Logiciel Nemrodw. Société LPRAI, 13010 Marseille. www.Nemrodw.com.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.