251
Views
0
CrossRef citations to date
0
Altmetric
Brief Report

N-bromosuccinimide/HCl mediated reduction of sulfoxides to sulfides

ORCID Icon, , , &
Pages 439-443 | Received 11 Nov 2020, Accepted 30 Dec 2020, Published online: 16 Jan 2021

References

  • (a) Madesclaire, M. Reduction of Sulfoxides to Thioethers. Tetrahedron 1988, 44, 6537–6580. (b) Drabowicz, J.; Togo, H.; Mikołajczyk, M.; Oae, S. Reduction of Sulfoxides. A Review. Org. Prep. Proced. Int. 1984, 16, 171–198. doi: 10.1080/00304948409355456. DOI: 10.1016/S0040-4020(01)90096-1.
  • Brot, N.; Weissbach, H. The Biochemistry of Methionine Sulfoxide Residues in Proteins. Trends Biochem. Sci. 1982, 7, 137–139. DOI: 10.1016/0968-0004(82)90204-3.
  • (a) Touchy, A. S.; Siddiki, S. H.; Onodera, W.; Kon, K.; Shimizu, K.-i. Hydrodeoxygenation of Sulfoxides to Sulfides by a Pt and MoOx Co-loaded TiO2 Catalyst. Green Chem. 2016, 18, 2554–2560. DOI: 10.1039/C5GC02806J.(b) Mitsudome, T.; Takahashi, Y.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Hydrogenation of Sulfoxides to Sulfides under Mild Conditions Using Ruthenium Nanoparticle Catalysts. Angew. Chem. Int. Ed. 2014, 53, 8348–8351. doi: 10.1002/anie.201403425.
  • (a) Sousa, S. C.; Bernardo, J. R.; Wolff, M.; Machura, B.; Fernandes, A. C. Oxo-Rhenium(V) Complexes Containing Heterocyclic Ligands as Catalysts for the Reduction of Sulfoxides. Eur. J. Org. Chem. 2014, 9, 1855–1859. DOI: 10.1002/ejoc.201301057.(b) Harrison, D. J.; Tam, N. C.; Vogels, C. M.; Langler, R. F.; Baker, R. T.; Decken, A.; Westcott, S. A. A Gentle and Efficient Route for the Deoxygenation of Sulfoxides Using Catecholborane (HBcat; cat = 1,2-O2C6H4). Tetrahedron Lett. 2004, 45, 8493–8496. doi: 10.1016/j.tetlet.2004.09.068. (c) Fernandes, A. C.; Fernandes, J. A.; Romao, C. C.; Veiros, L. F.; Calhorda, M. J. Highly Efficient Reduction of Sulfoxides with the System Borane/Oxo-rhenium Complexes. Organometallics 2010, 29, 5517–5525. doi: 10.1021/om100450a. (d) Drabowicz, J.; Dudzinski, B.; Mikolajczyk, M. Sulfonic Acid-Sodium Iodide System as an Efficient Reagent for the Reduction of Sulfoxides. Synlett 1992, 3, 252–254. doi: 10.1055/s-1992-21995. (e) Fernandes, A. C.; Romao, C. C. Reduction of Sulfoxides with Boranes Catalyzed by MoO2Cl2. Tetrahedron Lett. 2007, 48, 9176–9179. doi: 10.1016/j.tetlet.2007.10.106.
  • Takahashi, Y.; Mitsudome, T.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Highly Efficient Deoxygenation of Sulfoxides Using Hydroxyapatite-Supported Ruthenium Nanoparticles. Chem. Lett. 2014, 43, 420–422. DOI: 10.1246/cl.131077.
  • Sanz, R.; Escribano, J.; Aguado, R.; Pedrosa, M. R.; Arnáiz, F. J. Selective Deoxygenation of Sulfoxides to Sulfides with Phosphites Catalyzed by Dichlorodioxomolybdenum(VI). Synthesis 2004, 2004, 1629–1632. DOI: 10.1055/s-2004-829104.
  • García, N.; García-García, P.; Fernández-Rodríguez, M. A.; Rubio, R.; Pedrosa, M. R.; Arnáiz, F. J.; Sanz, R. Pinacol as a New Green Reducing Agent: Molybdenum-Catalyzed Chemoselective Reduction of Sulfoxides and Nitroaromatics. Adv. Synth. Catal. 2012, 354, 321–327. DOI: 10.1002/adsc.201100877.
  • (a) Krackl, S.; Company, A.; Enthaler, S.; Driess, M. Low-Valent Molybdenum-Based Dual Pre-Catalysts for Highly Efficient Catalytic Epoxidation of Alkenes and Deoxygenation of Sulfoxides. ChemCatChem 2011, 3, 1186–1192. (b) Fernandes, A. C.; Romao, C. C. A Novel Method for the Reduction of Sulfoxides and Pyridine N-Oxides with the System Silane/MoO2Cl2. Tetrahedron 2006, 62, 9650–9654. doi: 10.1016/j.tet.2006.07.077. (c) Enthaler, S.; Weidauer, M. Reduction of Sulfoxides to Sulfides in the Presence of Copper Catalysts. Catal. Lett. 2011, 141, 833–838. doi: 10.1007/s10562-011-0590-6. (d) Mikami, Y.; Noujima, A.; Mitsudome, T.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Highly Efficient Gold Nanoparticle Catalyzed Deoxygenation of Amides, Sulfoxides, and Pyridine N-Oxides. Chem. Eur. J. 2011, 17, 1768–1772. doi: 10.1002/chem.201003109. (e) Sousa, S. C. A.; Fernandes, A. C. Highly Efficient and Chemoselective Reduction of Sulfoxides Using the System Silane/Oxo-Rhenium Complexes. Tetrahedron Lett. 2009, 50, 6872–6876. doi: 10.1016/j.tetlet.2009.09.121. (f) Cabrita, I.; Sousa, S. C. A.; Fernandes, A. C. Reduction of Sulfoxides Catalyzed by Oxo-Complexes. Tetrahedron Lett. 2010, 51, 6132–6135. doi: 10.1016/j.tetlet.2010.09.071. (g) Enthaler, S. A Facile and Efficient Iron-Catalyzed Reduction of Sulfoxides to Sulfides. ChemCatChem, 2011, 3, 666–670. doi: 10.1002/cctc.201000400. (h) García, N.; García-García, P.; Fernández-Rodríguez, M. A.; García D.; Pedrosa, M. R.; Arnáiz, F. J.; Sanz, R. An Unprecedented Use for Glycerol: Chemoselective Reducing Agent for Sulfoxides. Green Chem. 2013, 15, 999–1005. doi: 10.1039/C3GC36908K. (i) García, N.; Fernández-Rodríguez, M. A.; García-García, P.; Pedrosa, M. R.; Arnáiz, F. J.; Sanz, R. A Practical and Chemoselective Mo-Catalysed Sulfoxide Reduction Protocol Using a 3-Mercaptopropyl-Functionalized Silica Gel (MPS). RSC Adv. 2016, 6, 27083–27086. doi: 10.1039/C6RA03106D. DOI: 10.1002/cctc.201100007.
  • Abbasi, M.; Mohammadizadeh, M. R.; Moradi, Z. Efficient Reduction of Sulfoxides with NaHSO3 Catalyzed by I2. Tetrahedron Lett. 2015, 56, 6610–6613. DOI: 10.1016/j.tetlet.2015.10.035.
  • Jang, Y.; Kim, K. T.; Jeon, H. B. Deoxygenation of Sulfoxides to Sulfides with Thionyl Chloride and Triphenylphosphine: Competition with the Pummerer Reaction. J. Org. Chem. 2013, 78, 6328–6331. DOI: 10.1021/jo4008157.
  • Karimi, B.; Zareyee, D. Rapid, Efficient and Chemoselective Deoxygenation of Sulfoxides to Thioethers-sing NaBH4/I2. Synthesis 2003, 2003, 0335–0336. DOI: 10.1055/s-2003-37349.
  • Iranpoor, N.; Firouzabadi, H.; Shaterian, H. R. A New Approach to the Reduction of Sulfoxides to Sulfides with 1,3-Dithiane in the Presence of Electrophilic Bromine as Catalyst. J. Org. Chem. 2002, 67, 2826–2830. DOI: 10.1021/jo016027y.
  • Zupanc, A.; Jereb, M. NaSH-HCl Mediated Reduction of Sulfoxides into Sulfides under Organic Solvent-Free Reaction Conditions. Green Chem. Lett. Rev. 2020, 13, 341–348. DOI: 10.1080/17518253.2020.1838625.
  • (a) Suzuki, K.; Jeong, J.; Yamaguchi, K.; Mizuno, N. Photoredox Catalysis for Oxygenation/Deoxygenation between Sulfides and Sulfoxides by Visible-Light-Responsive Polyoxometalates. New J. Chem. 2016, 40, 1014–1021. DOI: 10.1039/C5NJ01045D.(b) Kominami, H.; Nakanishi, K.; Yamamoto, S.; Imamura, K.; Hashimoto, K. Photocatalytic Deoxygenation of Sulfoxides to Sulfides over Titanium(IV) Oxide at Room Temperature without Use of Metal Co-Catalysts. Catal. Commun. 2014, 54, 100–103. doi: 10.1016/j.catcom.2014.05.028.
  • Landini, D.; Modena, G.; Montanari, F.; Scorrano, G. Reduction and Racemization of Sulfoxides by Halide Ions in Aqueous Perchloric Acid. J. Am. Chem. Soc. 1970, 92, 7168–7174. DOI: 10.1021/ja00727a024.
  • (a) Bahrami, K.; Khodaei, M. M.; Sohrabnezhad, S. Cyanuric Chloride as Promoter for the Oxidation of Sulfides and Deoxygenation of Sulfoxides. Tetrahedron Lett. 2011, 52, 6420–6423. DOI: 10.1016/j.tetlet.2011.09.073.(b) Atabaki, F.; Abedini, E.; Shokrolahi, A. Efficient Oxidation of Sulfides to Sulfoxides and Deoxygenation of Sulfoxides over Carbonaceous Solid Acid. Phosphorus Sulfur Silicon. Relat. Elem. 2015, 190, 1169–1176. doi: 10.1080/10426507.2014.978325. (c) Zarei, M.; Ameri, M. A.; Jamaleddini, A. NaI/Silica Sulfuric Acid as An Efficient Reducing System for Deoxygenation of Sulfoxides in Poly Ethylene Glycol (PEG-200). J. Sulfur Chem. 2013, 34, 259–263. doi: 10.1080/17415993.2012.733005. (d) Bahrami, K.; Khodaei, M. M.; Karimi, A. Mild and Efficient Deoxygenation of Sulfoxides to Sulfides with Triflic Anhydride/Potassium Iodide Reagent System. Synthesis 2008, 16, 2543–2546. doi: 10.1055/s-2008-1067190. (e) Bahrami, K.; Khodaei, M. M.; Sheikh, A. M. TAPC-Promoted Oxidation of Sulfides and Deoxygenation of Sulfoxides. J. Org. Chem. 2010, 75, 6208–6213. doi: 10.1021/jo1011784. (f) Chasar, D. W.; Shockcor, J. P. The Deoxygenation of Sulfoxides with Anhydrous HCl/KI. Phosphorus Sulfur Silicon Relat. Elem. 1980, 8, 187–188. doi: 10.1080/03086648008078186.
  • (a) Guindon, Y.; Atkinson, J. G.; Morton, H. E. Deoxygenation of Sulfoxides with Boron Bromide Reagents. J. Org. Chem. 1984, 49, 4538–4540. DOI: 10.1021/jo00197a043.(b) Mohanazadeh, F.; Veisi, H.; Sedrpoushan, A.; Zolfigol, M. A.; Golmohammad, F.; Hemmati, S.; Hashemi, M. A very Useful and Mild Method for the Deoxygenation of Sulfoxide to Sulfide with Silica Bromide as Heterogeneous Promoter. J. Sulfur. Chem. 2014, 35, 7–13. doi: 10.1080/17415993.2013.801478.
  • (a) Smythe, J. A. XLV.-Benzyl Sulphoxide: A Possible Example of Dynamic Isomerism. J. Chem. Soc. Trans. 1909, 95, 349–370. DOI: 10.1039/CT9099500349.(b) Gazdar, M.; Smiles, S. CCXXXVI.-Aromatic Hydroxy-Sulphoxides. J. Chem. Soc. Trans. 1910, 97, 2248–2253. doi: 10.1039/CT9109702248.
  • (a) Page, H. J.; Smile, S. XCII.-The Intramolecular Rearrangement of the Halides of Phenazothionium. J. Chem. Soc. Trans. 1910, 97, 1112–1118. DOI: 10.1039/CT9109701112.(b) Schmalz, A. C.; Burger, A. The Action of Hydrochloric and Nitric Acids on Some Derivatives of Phenothiazine. J. Am. Chem. Soc. 1954, 76, 5455–5459. doi: 10.1021/ja01650a058. (c) Craig, J. C.; Tate, M. E.; Donovan, F. W.; Rogers, W. P. Chemical Constitution and Anthelmintie Activity–V. Alkoxy-and Chlorophenothiazines. J. Med. Pharm. Chem. 1960, 2, 669–680. doi: 10.1021/jm50013a006.
  • Shine, H. J.; Dais, C. F. Ion Radicals. VII. The Reactions of Thianthrene Oxide in Hydrochloric Acid. J. Org. Chem. 1965, 30, 2145–2148. DOI: 10.1021/jo01018a006.
  • Xu, H.-J.; Zhao, Y.-Q.; Feng, T.; Feng, Y.-S. Chan-Lam-Type S-Arylation of Thiols with Boronic Acids at Room Temperature. J. Org. Chem. 2012, 77, 2878–2884. DOI: 10.1021/jo300100x.
  • Tan, C. M.; Chen, G. S.; Chen, C. S.; Chern, J. W. Microwave-Assisted Cross-Coupling for the Construction of Diaryl Sulfides. J. Chin. Chem. Soc. 2011, 58, 94–100. DOI: 10.1002/jccs.201190064.
  • Wang, H.; Jiang, L.; Chen, T.; Li, Y. A Highly Efficient, Ligand-Free, and Recyclable Cu2S-Catalyzed Coupling of Aryl Iodides with Diaryl Disulfides. Eur. J. Org. Chem. 2010, 2010, 2324–2329. DOI: 10.1002/ejoc.201000003.
  • Fu, W.; Liu, T.; Fang, Z.; Ma, Y.; Zheng, X.; Wang, W.; Ni, X.; Hu, M.; Tang, T. High Activity and Stability in the Cross-Coupling of Aryl Halides with Disulfides over Cu-Doped Hierarchically Porous Zeolite ZSM-5. Chem. Commun. 2015, 51, 5890–5893. DOI: 10.1039/C4CC10417J.
  • Xu, H.-J.; Liang, Y.-F.; Zhou, X.-F.; Feng, Y.-S. Efficient Recyclable CuI-Nanoparticle-Catalyzed S-Arylation of Thiols with Aryl Halides on Water under Mild Conditions. Org. Biomol. Chem. 2012, 10, 2562–2568. DOI: 10.1039/C2OB06795A.
  • Jabbari, A.; Zarei, M.; Jamaleddini, A. I2 as a Mild and Efficient Catalyst in Deoxygenation of Sulfoxides with Thioacetic Acid. J. Sulfur. Chem. 2012, 33, 413–418. DOI: 10.1080/17415993.2012.693491.
  • Shi, Q.; Lu, R.; Lu, L.; Fu, X.; Zhao, D. Efficient Reduction of Nitroarenes over Nickel-Iron Mixed Oxide Catalyst Prepared from a Nickel-Iron Hydrotalcite Precursor. Adv. Synth. Catal. 2007, 349, 1877–1881. DOI: 10.1002/adsc.200700070.
  • Bates, C. G.; Gujadhur, R. K.; Venkataraman, D. A General Method for the Formation of Aryl-Sulfur Bonds Using Copper(I) Catalysts. Org. Lett. 2002, 4, 2803–2806. DOI: 10.1021/ol0264105.
  • Zha, G. F.; Fang, W.; Leng, J.; Qin, H. A Simple, Mild and General Oxidation of Alcohols to Aldehydes or Ketones by SO2F2/K2CO3 Using DMSO as Solvent and Oxidant. Adv. Synth. Catal. 2019, 361, 2262–2267. DOI: 10.1002/adsc.201900104.
  • Zhao, X.; Zheng, X.; Yang, B.; Sheng, J.; Lu, K. Deoxygenation of Sulphoxides to Sulphides with Trichlorophosphane. Org. Biomol. Chem. 2018, 16, 1200–1204. DOI: 10.1039/c7ob02834b.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.