54
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of the reaction mechanism between cyclohexyl isocyanide and dimethyl acetylenedicarboxylate in the presence of 2-mercaptobenzoxazole: a theoretical study

, , &
Pages 656-663 | Received 05 Nov 2020, Accepted 07 Mar 2021, Published online: 26 Mar 2021

References

  • Dömling, A.; Ugi, I. Multicomponent Reactions with Isocyanides. Angew. Chem. Int. Ed. 2000, 39, 3168–3210. DOI: 10.1002/1521-3773(20000915)39:18 < 3168::aid-anie3168 > 3.0.co;2-u.
  • Ghandi, M.; Tabatabaei Ghomi, A.; Kubicki, M. J. Synthesis of Cyclopentadiene-Fused Chromanones via One-Pot Multicomponent Reactions. J. Org. Chem. 2013, 78, 2611–2616. DOI: 10.1021/jo302790y.
  • Zhou, H. Y.; Zhang, W.; Yan, B. Use of Cyclohexylisocyanide and Methyl 2-Isocyanoacetate as Convertible Isocyanides for Microwave-Assisted Fluorous Synthesis of 1,4-Benzodiazepine-2,5-Dione Library. J. Comb. Chem. 2010, 12, 206–214. DOI: 10.1021/cc900157w.
  • Jiang, B.; Tu, S. J.; Kaur, P.; Wever, W.; Li, G. Four-Component Domino Reaction Leading to Multifunctionalized Quinazolines. J. Am. Chem. Soc. 2009, 131, 11660–11661. DOI: 10.1021/ja904011s.
  • Soleimani, E.; Zainali, M.; Ghasemi, N.; Notash, B. Isocyanide-Based Multicomponent Reactions: synthesis of 2-(1-(Alkylcarbamoyl)-2,2-Dicyanoethyl)-N-Alkylbenzamide and 1,7-Diazaspiro[4,4]Nonane-2,4-Dione Derivatives. Tetrahedron 2013, 69, 9832–9838. DOI: 10.1016/j.tet.2013.09.011.
  • Esmaeili, A. A.; Zendegani, H. Three-Component Reactions Involving Zwitterionic Intermediates for the Construction of Heterocyclic Systems: one Pot Synthesis of Highly Functionalized γ-Iminolactones. Tetrahedron 2005, 61, 4031–4034. DOI: 10.1016/j.tet.2005.02.053.
  • Souldozi, A.; Ślepokura, K.; Lis, T.; Ramazan, A. Synthetic Applications of Passerini Reaction. Curr. Org. Chem 2012, 16, 418–450. DOI: 10.2174/138527212799499868.
  • Souldozi, A.; Ślepokura, K.; Lis, T.; Ramazan, A. Synthesis and Single Crystal X-Ray Structure of 2-(1,3,4-Oxadiazol- 2-yl) Aniline. Z. Natur. B 2007, 62, 835–840. DOI: 10.1515/znb-2007-0613.
  • Kazemizadeh, A. R.; Ramazani, A. Three Component Reaction of Indane-1,2,3-Trione, Tosylmethyl Isocyanide and Benzoic Acid Derivatives. ARKIVOC 2008, 2008, 159–165. doi:/10.3998/ark.5550190.0009.f15. DOI: 10.3998/ark.5550190.0009.f15.
  • Ramazani, A.; Salmanpour, S.; Souldozi, A. (N-Isocyanimino)triphenylphosphorane-Catalyzed Stereoselective O-Vinylation of N-Hydroxyimides. Phosphorus Sulfur Silicon Relat. Elem. 2009, 185, 97–102. DOI: 10.1080/10426500802713317.
  • Ashtary, M.; Ramazani, A.; Kazemizadeh, A.; Shajari, N.; Fattahi, N.; Woo Joo, S. Four-Component Synthesis of Ferrocene-Containing 1,3,4-Oxadiazoles from N-Isocyaniminotriphenylphosphorane (Ph3PNNC), a Primary Amine, a Cyclic Ketone and Ferrocene Carboxylic Acid. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1402–1407. DOI: 10.1080/10426507.2016.1209503.
  • Ramazani, A.; Zeinali Nasrabadi, F.; Karimi, Z.; Rouhan, M. Preparation of Fully Substituted 1,3,4-Oxadiazole Derivatives from N-Isocyaniminotriphenylphosphorane, (E)-Cinnamic Acids, Chloroacetone and Primary Amines. Bull. Korean Chem. Soc. 2011, 32, 2700–2704. DOI: 10.5012/bkcs.2011.32.8.2700.
  • Rouhani, M.; Ramazani, A.; Woo Joo, S. Ultrasonics in Isocyanide-Based Multicomponent Reactions: A New, Efficient and Fast Method for the Synthesis of Fully Substituted 1,3,4-Oxadiazole Derivatives under Ultrasound Irradiation. Ultrason. Sonochem. 2015, 22, 391–396. DOI: 10.1016/j.ultsonch.2014.06.017.
  • Ramazani, A.; Souldozi, A. Iminophosphorane-Mediated One-Pot Synthesis of 1,3,4-Oxadiazole Derivatives. ARKIVOC 2008, 2008, 235–242. DOI: 10.3998/ark.5550190.0009.g22.
  • Ramazani, A.; Shajari, N.; Tofangchi Mahyari, A.; Khoobi, M.; Ahmadi, Y.; Souldozi, A. (N-Isocyanimino) Triphenyl Phosphor Anemediated, One-Pot, Efficient Synthesis of Sterically Ongested 1,1,1-Trifluoro-2-(5-Aryl- 1,3,4-Oxadiazol-2-yl)-2-Propanol Derivatives via Intramolecular Aza-Wittig Reaction. Phosphorus Sulfur Silicon Relat. Elem. 2010, 185, 2496–2502. DOI: 10.1080/10426501003713098.
  • Benjamin, H. R.; Serge, Z.; Vishal, R.; Andrei, K. Y. Small Heterocycles in Multicomponent Reactions. Chem. Rev. 2014, 114, 8323–8359. DOI: 10.1021/cr400615v.
  • Cornelissen, J. J.; Rowan, A. E.; Nolte, R. J.; Sommerdijk, N. A. Chiral Architectures from Macromolecular Building Blocks. Chem. Rev. 2001, 101, 4039–4070. DOI: 10.1021/cr990126i.
  • Sun, L. Q.; Chen, J.; Takaki, K.; Johnson, G.; Iben, L.; Mahle, C. D.; Ryan, E.; Xu, C. Design and Synthesis of Benzoxazole Derivatives as Novel Melatoninergic Ligands. Bioorg. Med. Chem. Lett. 2004, 14, 1197–1200. DOI: 10.1016/j.bmcl.2003.12.052.
  • Johnson, S. M.; Connelly, S.; Wilson, I. A.; Kelly, J. W. Biochemical and Structural Evaluation of Highly Selective 2-Arylbenzoxazole-Based Transthyretin Amyloidogenesis Inhibitors. J. Med. Chem. 2008, 51, 260–270. DOI: 10.1021/jm0708735.
  • Sessions, E. H.; Yin, Y.; Bannister, T. D.; Weiser, A.; Griffin, E.; Pocas, J.; Cameron, M. D.; Ruiz, C.; Lin, L.; Schürer, S. C.; et al. Benzimidazole- and Benzoxazole-Based Inhibitors of Rho Kinase. Bioorg. Med. Chem. Lett. 2008, 18, 6390–6393. DOI: 10.1016/j.bmcl.2008.10.095.
  • Rida, M. S.; Ashour, F. A.; El-Hawash, S. A. M.; ElSemary, M. M.; Badr, M. H.; Shalaby, M. A. Synthesis of Some Novel Benzoxazole Derivatives as Anticancer, anti-HIV-1 and Antimicrobial Agents. Eur. J. Med. Chem 2005, 40, 949–959. DOI: 10.1016/j.ejmech.2005.03.023.
  • Taki, M.; Wolford, J. L.; Halloran, T. V. O. Emission Ratiometric Imaging of Intracellular Zinc: design of a Benzoxazole Fluorescent Sensor and Its Application in Two-Photon Microscopy. J. Am. Chem. Soc. 2004, 126, 712–713. DOI: 10.1021/ja039073j.
  • Zakarianezhad, M.; Makiabadi, B.; Habibi-Khorassani, S. M.; Shool, M.; Eslamlou, M. Theoretical Study on Mechanism of Reaction between Tert-Butyl Isocyanide and Dimethyl Acetylenedicarboxylate in Presence of Ethanethiol or Thiophenol. Res. Chem. Intermed. 2018, 44, 2653–2665. DOI: 10.1007/s11164-018-3252-0.
  • Zakarianezhad, M.; Masoodi, H. R.; Shool, M. Further Insight into the Mechanism of the Novel Multicomponent Reactions Involving Isoquinoline and Dimethyl Acetylenedicarboxylate in the Presence of 3‐Methylindole. Int. J. Chem. Kinet. 2016, 48, 770–778. DOI: 10.1002/kin.21031.
  • Zakarianezhad, M.; Makiabadi, B.; Hosseini, S. S. Theoretical Study of the Reaction Mechanism between Triphenylphosphine with Dialkyl Acetylenedicarboxylates in the Presence of Benzotriazole. Theor. Chem. Acc. 2021, 140, 13. DOI: 10.1007/s00214-020-02714-9.
  • Makiabadi, B.; Zakarianezhad, M. Investigation of Physicochemical Properties of Aggregated Models of [MIM+]2[C(CN)3-]2 Ionic Liquid: A Theoretical Study. Phys. Chem. Res 2020, 8, 343–354. DOI: 10.22036/pcr.2020.209284.1703.
  • Zakarianezhad, M.; Masoodi, H. R.; Shool, M. Theoretical Study of the Mechanism of Stable Phosphorus Ylides Derived from 2-Aminothiophenol in the Presence of Different Dialkyl Acetyelenedicarboxylates. Phosphorus Sulfur Silicon Relat Elem. 2016, 191, 1063–1068. DOI: 10.1080/10426507.2016.1138305.
  • Zakarianezhad, M.; Mohammad Dadi, P. Mechanistic Investigation of the Reaction of Thiourea with Dialkyl Acetylenedicarboxylates: A Theoretical Study. J. Sulfur. Chem. 2015, 36, 422–433. DOI: 10.1080/17415993.2015.1043635.
  • Makiabadi, B.; Zakarianezhad, M.; Azodi, A. Theoretical Insights into the Adsorption Behavior of CO Molecules on the Pure and Vn-Doped BN Nanotubes. Int. J. Nano Dimens 2020, 11, 248–257. DOI: 10.1016/j.calphad.2018.12.011..
  • Makiabadi, B.; Zakarianezhad, M.; Esfandiarpoor, S. Influence of CO2 Molecules Adsorption on the Electronic Properties of Zigzag and Armchair ZnO Nanotubes. JNanoR 2019, 60, 51–62. DOI: 10.4028/www.scientific.net/JNanoR.60.51.
  • Makiabadi, B.; Zakarianezhad, M.; Sardouie Nasab, S. Theoretical Study of Interaction of NH2X (X = H, CH3, CH2OCH3, and CH2COOH) Molecules with AlN and AlP Nanotubes. Phosphorus Sulfur Silicon Relat Elem 2017, 192, 81–87. DOI: 10.1080/10426507.2016.1225055.
  • Ekrami-Kakhki, M. S.; Naeimi, A.; Donyagard, F. Pt Nanoparticles Supported on a Novel Electrospun Polyvinyl alcohol-CuO Co3O4/Chitosan Based on Sesbania Sesban Plant as an Electrocatalyst for Direct Methanol Fuel Cells. Int. J. Hydrog. Energy 2018, 43, 16913–16921. doi DOI: 10.1007/s10854-017-7057-5.
  • Ekrami-Kakhki, M. S.; Farzaneh, N.; Abbasi, S.; Beitollahi, H.; Ekrami-Kakhki, S. A. An Investigation of Methyl Viologen Functionalized Reduced Graphene Oxide: Chitosan as a Support for Pt Nanoparticles towards Ethanol Electrooxidation. Electron. Mater. Lett. 2018, 14, 616–628. DOI: 10.1007/s13391-018-0071-9.
  • Zakarianezhad, M.; Habibi-Khorassani, S. M.; Makiabadi, B.; Zeydabadi, E. Three-Component Reaction Involving Isoquinoline and Dimethyl Acethylenedicarboxylate in the Presence of Indole: Theoretical and Experimental Investigations of the Reaction Mechanism. Prog. React. Kinet. Mech. 2021, 46, 146867832095686–146867832095613. DOI: 10.1177/1468678320956864.
  • Ekrami-Kakhki, M. S.; Farzaneh, N.; Abbasi, S.; Makiabadi, B. Electrocatalytic Activity of Pt Nanoparticles Supported on Novel Functionalized Reduced Graphene Oxide-Chitosan for Methanol Electrooxidation. J. Mater. Sci: Mater. Electron. 2017, 28, 12373–12382. DOI: 10.1007/s10854-017-7057-5.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 03. Gaussian Inc.:Wallingford, 2009.
  • Granovsky, A. A. PC Gamess, 7.1G, 2009.
  • Gonzalez, C.; Schlegel, H. B. Reaction Path following in Mass-Weighted Internal Coordinates. J. Phys. Chem. 1990, 94, 5523–5527. DOI: 10.1021/j100377a021.
  • Gonzalez, C.; Schlegel, H. B. An Improved Algorithm for Reaction Path following. J. Chem. Phys 1989, 90, 2154–2161. DOI: 10.1063/1.456010.
  • Fukui, K. Formulation of the Reaction Coordinate. J. Phys. Chem. 1970, 74, 4161–4163. DOI: 10.1021/j100717a029.
  • Fukui, K. The Path of Chemical Reactions - the IRC Approach. Acc. Chem. Res. 1981, 14, 363–368. DOI: 10.1021/j100717a029.
  • Tomasi, J.; Persico, M. Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chem. Rev. 1994, 94, 2027–2094. DOI: 10.1021/cr00031a013.
  • Cances, E.; Mennucci, B.; Tomasi, J. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. l DOI: 10.1063/1.474659.
  • Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Ab Initio Study of Solvated Molecules: A New Implementation of the Polarizable Continuum Model. J. Chem. Phys. Lett. 1996, 255, 327–335. DOI: 10.1016/0009-2614(96)00349-1.
  • Glendening, D. E.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO 2009, Version 3.1.
  • Khandan-Barani, K.; Maghsoodlou, M. T.; Hassanabadi, A.; Hosseini-Tabatabaei, M. R.; Saffari, J.; Kangani, M. Synthesis of Maleate Derivatives in Isocyanide-Base MCRs: reaction of 2-Mercaptobenzoxazole with Alkyl Isocyanides and Dialkyl Acetylenedicarboxylates. Res. Chem. Intermed. 2015, 41, 3011–3016. DOI: 10.1007/s11164-013-1409-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.