736
Views
1
CrossRef citations to date
0
Altmetric
Short Communication

Brønsted acid-catalyzed chlorination of aromatic carboxylic acids

ORCID Icon, , , , &
Pages 685-689 | Received 08 Jan 2021, Accepted 09 Mar 2021, Published online: 31 Mar 2021

References

  • Hardee, D. J.; Kovalchuke, L.; Lambert, T. H. Nucleophilic Acyl Substitution via Aromatic Cation Activation of Carboxylic Acids: Rapid Generation of Acid Chlorides under Mild Conditions. J. Am. Chem. Soc. 2010, 132, 5002–5003. DOI: 10.1021/ja101292a.
  • (a) Lin, H. K.; Dai, C. H.; Jamison, T. F.; Jensen, K. F. A Rapid Total Synthesis of Ciprofloxacin Hydrochloride in Continuous Flow. Angew. Chem. Int. Ed. Engl. 2017, 56, 8870–8873. DOI: 10.1002/anie.201703812. (b) Zhong, Z.; Xing, R.; Liu, S.; Wang, L.; Cai, S.; Li, P. Synthesis of Acyl Thiourea Derivatives of Chitosan and Their Antimicrobial Activities in Vitro. Carbohydr. Res. 2008, 343, 566–570. DOI: 10.1016/j.carres.2007.11.024. (c) Nitulescu, G. M.; Draghici, C.; Missir, A. V. Synthesis of New Pyrazole Derivatives and Their Anticancer Evaluation. Eur. J. Med. Chem. 2010, 45, 4914–4919. DOI: 10.1016/j.ejmech.2010.07.064. (d) Chu, D. T. W.; Fernandes, P. B.; Claiborne, A. K.; Gracey, E. H.; Pernet, A. G. Synthesis and Structure-Activity Relationships of New Arylfluoronaphthyridine Antibacterial Agents. J. Med. Chem. 1986, 29, 2363–2369. DOI: 10.1021/jm00161a036. (e) Tosso, N. P.; Desai, B. K.; De Oliveira, E.; Wen, J.; Tomlin, J.; Gupton, B. F. A Consolidated and Continuous Synthesis of Ciprofloxacin from a Vinylogous Cyclopropyl Amide. J. Org. Chem. 2019, 84, 3370–3376. DOI: 10.1021/acs.joc.8b03222. (f) Fu, K.; Yang, L.; Wang, Q. F.; Zhan, F. X.; Wang, B.; Yang, Q.; Ma, Z. J.; Zheng, G. X. A Three-Step Synthesis of Acotiamide for the Treatment of Patients with Functional Dyspepsia. Org. Process Res. Dev. 2015, 19, 2006–2011. DOI: 10.1021/acs.oprd.5b00256.
  • (a) Dovlatyan, V. V.; Eliazyan, K. A.; Ghazaryan, E. A.; Yengoyan, A. P. Synthesis of Azinylthioureas and Their Heterocyclization Using α-Chloroacetoacetic Ester. Chem. Heterocycl. Compd. 2006, 42, 389–391. DOI: 10.1007/s10593-006-0097-z. (b) Frei, P.; Jones, D. H.; Kay, S. T.; McLellan, J. A.; Johnston, B. F.; Kennedy, A. R.; Tomkinson, N. C. O. Regioselective Reaction of Heterocyclic N-Oxides, an Acyl Chloride, and Cyclic Thioethers. J. Org. Chem. 2018, 83, 1510–1517. DOI: 10.1021/acs.joc.7b02457.
  • (a) Xu, D. A Production Process of 2-Bromopropionyl Chloride. CN patent CN104058953A, 2011. (b) Patel, D. R.; Patel, K. C. Novel 2-Phenyl-3-{4'-[n-(4''-aminophenyl)carbamoyl]-phenyl}-quinazoline-4(3H)one-6-sulphonic acid Based Mono Azo Reactive Dyes. J. Serb. Chem. Soc. 2011, 76, 177–188. DOI: 10.2298/JSC090225021P.
  • (a) Kang, C. S.; Paik, M. J.; Park, C. W.; Baik, D. H. Synthesis and Characterization of Polyhydroxyamide Copolymers as Precursors of Polybenzoxazoles. Fibers Polym. 2015, 16, 239–244. DOI: 10.1007/s12221-015-0239-y. (b) Lee, E. H.; Jee, M. H.; Kang, C. S.; Baik, D. H. Preparation and Characterization of Polyhydroxyamide Hybrid Nanocomposite Films Containing MWCNTs and Clay as Reinforcing Materials. Fibers Polym. 2019, 20, 832–838. DOI: 10.1007/s12221-019-1034-y. (c) Etxeberria, A.; Guezala, S.; Iruin, J. J.; de la Campa, J.; de Abajo, J. Blends of Poly(Ether Imide) and an Aromatic Poly(Ether Amide): Phase Behavior and CO2 Transport Properties. J. Appl. Polym. Sci. 1998, 68, 2141–2149. DOI: 10.1002/(SICI)1097-4628(19980627)68:133.0.CO;2-2. (d) Ben-Haida, A.; Hodge, P.; Colquhoun, H. M. Ring-Chain Interconversion in High-Performance Polymer Systems. 3. Cyclodepolymerization of Poly(m-phenylene isophthalamide) (Nomex) and Entropically Driven Ring-Opening Polymerization of the Macrocyclic Oligomers so Produced. Macromolecules. 2005, 38, 722–729. DOI: 10.1021/ma0401370. (e) García, J. M.; García, F. C.; Serna, F.; de la Peña, J. L. High-Performance Aromatic Polyamides. Prog. Polym. Sci. 2010, 35, 623–686. DOI: 10.1016/j.progpolymsci.2009.09.002.
  • (a) Zaragoza, F. One-Step Conversion of Methyl Ketones to Acyl Chlorides. J. Org. Chem. 2015, 80, 10370–10374. DOI: 10.1021/acs.joc.5b01707. (b) Chu, C.; Liu, R. Chloralkanes as Chlorinating Agents: An Efficient Approach to Acyl Chlorides and Destruction of Chlorinated Hydrocarbons. Appl. Catal. B 2011, 101, 343–347. DOI: 10.1016/j.apcatb.2010.10.002. (c) Jang, D. O.; Park, D. J.; Kim, J. A Mild and Efficient Procedure for the Preparation of Acid Chlorides from Carboxylic Acids. Tetrahedron Lett. 1999, 40, 5323–5326. DOI: 10.1016/S0040-4039(99)00967-3. (d) Zuffanti, S. Preparation of Acyl Chlorides with Thionyl Chloride. J. Chem. Edu. 1948, 25, 481. DOI: 10.1021/ed025p481.
  • (a) Dunetz, J. R.; Magano, J.; Weisenburger, G. A. Large-Scale Applications of Amide Coupling Reagents for the Synthesis of Pharmaceuticals. Org. Process Res. Dev. 2016, 20, 140–177. DOI: 10.1021/op500305s. (b) Kimura, Y.; Matsuura, D. Novel Synthetic Method for the Vilsmeier-Haack Reagent and Green Routes to Acid Chlorides, Alkyl Formates, and Alkyl Chlorides. Int. J. Org. Chem. 2013, 03, 1–7. Doi: 10.4236/ijoc.2013.33A001. (c) Su, W. K.; Zhong, W. H.; Bian, G. F.; Shi, X. J.; Zhang, J. P. Recent Advances in the Chemistry of Trichloromethyl Chloroformate and Bis(trichloromethyl) Carbonate. Org. Prep. Proced. Int. 2004, 36, 499–547. DOI: 10.1080/00304940409355972. (d) Su, W. K.; Weng, Y. Y.; Zheng, C.; Zhang, Y.; Shi, F.; Hong, B.; Chen, Z. W.; Li, J. J.; Li, Z. H. Recent Developments in the Use of bis-(Trichloromethyl) Carbonate in Synthesis. Org. Prep. Proced. Int. 2009, 41, 93–141. DOI: 10.1080/00304940902885839. (e) Xiao, J.; Han, L.B. Atom-Efficient Chlorination of Benzoic Acids with PCl3 Generating Acyl Chlorides. J. Chem. Res. 2019, 43, 205–210. DOI: 10.1177/1747519819861316.
  • (a) Wu, G.; Wong, Y.; Steinman, M.; Tormos, W.; Schumacher, D. P.; Love, G. M.; Shutts, B. Practical Formal Total Syntheses of the Homocamptothecin Derivative and Anticancer Agent Diflomotecan via Asymmetric Acetate Aldol Additions to Pyridine Ketone Substrates. J. Org. Chem. 2006, 71, 7583. DOI: 10.1021/op970105v. (b) Hoekstra, M. S.; Sobieray, D. M.; Schwindt, M. A.; Mulhern, T. A.; Grote, T. M.; Huckabee, B. K.; Hendrickson, V. S.; Franklin, L. C.; Granger, E. J.; Karrick, G. L. Chemical Development of CI-1008, an Enantiomerically Pure Anticonvulsant. Org. Process Res. Dev. 1997, 1, 26–38. DOI: 10.1021/op9600320. (c) Dale, D. J.; Dunn, P. J.; Golightly, C.; Hughes, M. L.; Levett, P. C.; Pearce, A. K.; Searle, P. M.; Ward, G.; Wood, A. S. The Chemical Development of the Commercial Route to Sildenafil:  A Case History. Org. Process Res. Dev. 2000, 4, 17–22. DOI: 10.1021/op9900683. (d) Johnson, E. P.; Cantrell, W. R.; Jenson, T. M.; Miller, S. A.; Parker, D. J.; Reel, N. M.; Sylvester, L. G.; Szendroi, R. J.; Vargas, K. J.; Xu, J.; et al. Efficient Large Scale Preparation of Neutral Endopeptidase/Angiotensin-Converting Enzyme Dual Inhibitor. Org. Process Res. Dev. 1998, 2, 238–244. DOI: 10.1021/op970242s. (e) Pflum, D. A.; Wilkinson, H. S.; Tanoury, G. J.; Kessler, D. W.; Kraus, H. B.; Senanayake, C. H.; Wald, S. A. A Large-Scale Synthesis of Enantiomerically Pure Cetirizine Dihydrochloride Using Preparative Chiral HPLC. Org. Process Res. Dev. 2001, 5, 110–115. DOI: 10.1021/op0002951. (f) Peters, R.; Althaus, M.; Diolez, C.; Rolland, A.; Manginot, E.; Veyrat, M. Practical Formal Total Syntheses of the Homocamptothecin Derivative and Anticancer Agent Diflomotecan via Asymmetric Acetate Aldol Additions to Pyridine Ketone Substrates. J. Org. Chem. 2006, 71, 7583–7595. DOI: 10.1021/jo060928v. (g) Iida, T.; Satoh, H.; Maeda, K.; Yamamoto, Y.; Asakawa, K.-i.; Sawada, N.; Wada, T.; Kadowaki, C.; Itoh, T.; Mase, T.; et al. Practical Synthesis of a Neuropeptide Y Antagonist via Stereoselective Addition to a Ketene. J. Org. Chem. 2005, 70, 9222–9229. DOI: 10.1021/jo0512709.
  • (a) Wang, L.; Xie, Y. B.; Huang, N. Y.; Yan, J. Y.; Hu, W. M.; Liu, M. G.; Ding, M. W. Catalytic aza-Wittig Reaction of Acid Anhydride for the Synthesis of 4H-Benzo[d][1,3]oxazin-4-ones and 4-Benzylidene-2-aryloxazol-5(4H)-ones. Org. Lett. 2020, 22, 950–4016. DOI: 10.1021/acscatal.6b00165. (b) Zou, H.; Chen, G.; Zhou, S. Design, Synthesis and Biological Activity Evaluation of a New Class of 2,4-Thiazolidinedione Compounds as Insulin Enhancers. J. Enzyme Inhib. Med. Chem. 2019, 34, 981–989. DOI: 10.1080/14756366.2019.1608197. (c) Yu, C. G.; Matsuo, Y. Nickel-Catalyzed Deaminative Acylation of Activated Aliphatic Amines with Aromatic Amides via C-N Bond Activation. Org. Lett. 2020, 22, 950–955. DOI: 10.1021/acs.orglett.9b04497. (d) Aziz, H.; Saeed, A.; Khan, M. A.; Afridi, S.; Jabeen, F.; Ashfaq ur, R.; Hashim, M. Novel N-Acyl-1H-imidazole-1-carbothioamides: Design, Synthesis, Biological and Computational Studies. Chem. Biodivers. 2020, 17, e1900509. DOI: 10.1002/cbdv.201900509. (e) Jia, B.; Yang, Y.; Jin, X.; Mao, G.; Wang, C. Rhenium-Catalyzed Phthalide Synthesis from Benzamides and Aldehydes via C-H Bond Activation. Org. Lett. 2019, 21, 6259–6263. DOI: 10.1021/acs.orglett.9b02142. (f) Vini, R.; Murugavel, S. Photoisomerization and Thermal Degradation Kinetics of Poly(ether-ester)s Containing Azomethine Moiety in the Main Chain. High Perform. Polym. 2020, 32, 47–58. DOI: 10.1177/0954008319850614. (g) Muthusamy, A.; Balaji, K.; Murugavel, S. C.; Yuan, C.; Dai, L. Synthesis and Characterization of Liquid Crystalline Polyesters Containing α,β-unsaturated Ketone Moiety in the Main Chain Derived from 2,6-bis(4-hydroxybenzylidene)cyclohexanone. Polym. Sci. Ser. B 2020, 62, 245–255. DOI: 10.1134/s1560090420030112. (h) Muthusamy, A.; Balaji, K.; Murugavel, S. C. Synthesis, Thermal, and Photocrosslinking Studies of Thermotropic Liquid Crystalline Poly(benzylidene-ether)esters Containing α,β-Unsaturated Ketone Moiety in the Main Chain. J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 1707–1715. DOI: 10.1002/pola.26560.
  • (a) Katoono, R.; Obara, Y.; Fujiwara, K.; Suzuki, T. Enhanced Circular Dichroism at Elevated Temperatures Through Complexation-Induced Transformation of a Three-Layer Cyclophane with Dualistic Dynamic Helicity. Chem. Sci. 2018, 9, 2222–2229. DOI: 10.1039/C7SC05242A. (b) Burdett, K. A. An Improved Acid Chloride Preparation via Phase Transfer Catalysis. Synthesis 1991, 1991, 441–442. DOI: 10.1055/s-1991-26487. (c) Chen, G.; Lean, J. T.; Alcalá, M.; Mallouk, T. E. Modular Synthesis of π-Acceptor Cyclophanes Derived from 1,4,5,8-Naphthalenetetracarboxylic Diimide and 1,5-Dinitronaphthalene. J. Org. Chem. 2001, 66, 3027–3034. DOI: 10.1021/jo991054y.
  • Fu, Y.; Huang, Y. Z.; Wei, L. C.; Gao, J.; Song, C.; Miao, H.; Xu, J. Synthesis of Terephthaloyl Chloride via Acyl Chlorination Reaction Catalyzed by Iron Catalysts. Huaxue Shiji 2015, 37, 152–154. DOI: 10.13822/j.cnki.hxsj.2015.02.014.
  • Yu, Z. Q.; Xu, Q. L.; Liu, L. C.; Wu, Z. K.; Huang, J. J.; Lin, J. Y.; Su, W. K. Dinitration of o-Toluic Acid in Continuous-Flow: Process Optimization and Kinetic Study. J. Flow Chem. 2020, 10, 429–436. DOI: 10.1007/s41981-020-00078-6.
  • (a) Sardon, H.; Engler, A. C.; Chan, J. M. W.; García, J. M.; Coady, D. J.; Pascual, A.; Mecerreyes, D.; Jones, G. O.; Rice, J. E.; Horn, H. W.; Hedrick, J. L. Organic Acid-Catalyzed Polyurethane Formation via a Dual-Activated Mechanism: Unexpected Preference of N-Activation over O-Activation of Isocyanates. J. Am. Chem. Soc. 2013, 135, 16235–16241. DOI: 10.1021/ja408641g. (b) Susperregui, N.; Delcroix, D.; Martin-Vaca, B.; Bourissou, D.; Maron, L. Ring-Opening Polymerization of ε-Caprolactone Catalyzed by Sulfonic Acids: Computational Evidence for Bifunctional Activation. J. Org. Chem. 2010, 75, 6581–6587. DOI: 10.1021/jo101346t.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.