136
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Interaction between carboplatin with B12P12 and Al12P12 nano-clusters: A computational investigation

, &
Pages 751-759 | Received 07 Dec 2020, Accepted 19 Apr 2021, Published online: 07 May 2021

References

  • Pinedo, H. M.; Schornagel, J. H. Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy; Plenum Press: New York, 1996.
  • Go, R. S.; Adjei, A. A. Review of the Comparative Pharmacology and Clinical Activity of Cisplatin and Carboplatin. J. Clin. Oncol. 1999, 17, 409–422. DOI: 10.1200/JCO.1999.17.1.409.
  • Rosenberg, B.; Camp, L. V.; Krigas, T. Inhibition of Cell Division in Escherichia coli by Electrolysis Products from a Platinum Electrode. Nature 1965, 205, 698–699. DOI: 10.1038/205698a0.
  • Rosenberg, B.; Camp, L. V.; Trosko, J. E.; Mansour, V. H. Platinum Compounds: A New Class of Potent Antitumour Agents. Nature 1969, 222, 385–386. DOI: 10.1038/222385a0.
  • Jamieson, E. R.; Lippard, S. J. Structure, Recognition, and Processing of Cisplatin-DNA Adducts. Chem. Rev. 1999, 99, 2467–2498. DOI: 10.1021/cr980421n.
  • Fuertes, M. A.; Alonso, C.; Perez, J. M. Biochemical Modulation of Cisplatin Mechanisms of Action: enhancement of Antitumor Activity and Circumvention of Drug Resistance. Chem. Rev. 2003, 103, 645–662. DOI: 10.1021/cr020010d.
  • Tsang, R. Y.; Al-Fayea, T.; Au, H.-J. Cisplatin Overdose: Toxicities and Management. Drug Saf. 2009, 32, 3, 1109–1122. DOI: 10.2165/11316640-000000000-00000.
  • Barry, N. P. E.; Sadler, P. J. Challenges for Metals in Medicine: How Nanotechnology May Help to Shape the Future. ACS Nano. 2013, 7, 5654–5659. DOI: 10.1021/nn403220e.
  • Gabano, E.; Ravera, M.; Osella, D. The Drug Targeting and Delivery Approach Applied to pt-Antitumour Complexes. A Coordination Point of View. Curr Med Chem. 2009, 16, 4544–4580. DOI: 10.2174/092986709789760661.
  • Oun, R.; Plumb, J. A.; Wheate, N. J. A Cisplatin Slow-Release Hydrogel Drug Delivery System Based on a Formulation of the Macrocycle Cucurbit[7]Uril, Gelatin and Polyvinyl Alcohol. J. Inorg. Biochem. 2014, 134, 100–105. DOI: 10.1016/j.jinorgbio.2014.02.004.
  • Cai, L.; Yu, C.; Ba, L.; Liu, Q.; Qian, Y.; Yang, B.; Gao, C. Anticancer Platinum-Based Complexes with Non-Classical Structures. Appl. Organometal. Chem. 2018, 32, 1–17. DOI: 10.1002/aoc.4228..
  • Ahmad, S. Kinetic Aspects of Platinum Anticancer Agents. Polyhedron 2017, 138, 109–124. DOI: 10.1016/j.poly.2017.09.016.
  • Dilruba, S.; Kalayda, G. V. Platinum-Based Drugs: Past, Present and Future. Cancer Chemother. Pharmacol. 2016, 77, 1103–1124. DOI: 10.1007/s00280-016-2976-z.
  • Wang, X.; Wang, X.; Guo, Z. Functionalization of Platinum Complexes for Biomedical Applications. Acc. Chem. Res. 2015, 48, 2622–2631. DOI: 10.1021/acs.accounts.5b00203.
  • Wang, X.; Guo, Z. Targeting and Delivery of Platinum-Based Anticancer Drugs. Chem. Soc. Rev. 2013, 42, 202–224. DOI: 10.1039/c2cs35259a.
  • Wang, D.; Lippard, S. J. Cellular Processing of Platinum Anticancer Drugs. Nat Rev Drug Discov. 2005, 4, 307–320. DOI: 10.1038/nrd1691.
  • Wheate, N. J.; Walker, S.; Craig, G. E.; Oun, R. The Status of Platinum Anticancer Drugs in the Clinic and in Clinical Trials. Dalton Trans. 2010, 39, 8113–8127. DOI: 10.1039/c0dt00292e.
  • Dwyer, P. J. O.; Stevenson, J. P.; Johnson, S. W. Clinical Pharmacokinetics and Administration of Established Platinum Drugs. Drugs 2000, 59, 19–27. DOI: 10.2165/00003495-200059004-00003..
  • Cleare, M. J.; Hoeschele, J. D. Studies on the Antitumor Activity of Group VIII Transition Metal Complexes. Part I. Platinum(II) Complexes. Bioinorg. Chem. 1973, 2, 187–210. DOI: 10.1016/S0006-3061(00)80249-5.
  • Newman, M. S.; Colbern, G. T.; Working, P. K.; Engbers, C.; Amantea, M. A. Comparative Pharmacokinetics, Tissue Distribution, and Therapeutic Effectiveness of Cisplatin Encapsulated in Long-Circulating, Pegylated Liposomes (SPI-077) in Tumor-Bearing Mice. Cancer Chemother. Pharmacol. 1999, 43, 1–7. DOI: 10.1007/s002800050855.
  • Johnstone, T. C.; Alexander, S. M.; Wilson, J. J.; Lippard, S. J. Oxidative Halogenation of Cisplatin and Carboplatin: synthesis, Spectroscopy, and Crystal and Molecular Structures of Pt(IV) Prodrugs. Dalton Trans. 2015, 44, 119–129. DOI: 10.1039/C4DT02627F.
  • Dabrowiak, J. C. Platinum Anticancer Drugs. Metals in Medicine; Wiley: Hoboken, 2009.
  • Gietema, J. A.; Vries, E. G. E. D.; Sleijfer, D. T.; Willemse, P. H. B.; Guchelaar, H. J.; Uges, D. R. A.; Aulenbacher, P.; Voegeli, R.; Mulder, N. H. A Phase I Study of 1, 2-Diamminomethyl-Cyclobutane-Platinum (II)-Lactate (D-19466; Lobaplatin) Administered Daily for 5 Days. Br. J. Cancer 1993, 67, 396–401. DOI: 10.1038/bjc.1993.73.
  • Fiebig, H. H.; Henß, H.; von Pawel, I.; Gatzemeier, U.; Manegold, C.; Edler, L.; Berdel, W. Phase II Clinical Trial of Lobaplatin (D-19466) in Pretreated Patients with Small-Cell Lung Cancer. Oncol. Res. Treat. 1996, 19, 328–332. DOI: 10.1159/000218823.
  • Strout, D. L. Structure and Stability of Boron Nitrides: Isomers of B12N12. J. Phys. Chem. A. 2000, 104, 3364–3366. DOI: 10.1021/jp994129a.
  • Bertolus, B.; Finocchi, F.; Millie, P. Investigating Bonding in Small Silicon-Carbon Clusters: Exploration of the Potential Energy Surfaces of Si3C4, Si4C3, and Si4C4 Using Ab Initio Molecular Dynamics. J. Chem. Phys. 2004, 120, 4333–4343. DOI: 10.1063/1.1636717.
  • Fu, C.-C.; Weissmann, M.; Machado, M.; Ordejón, P. Ab Initio Study of Silicon-Multisubstituted Neutral and Charged Fullerenes. Phys. Rev. B. 2001, 63, 85411. DOI: 10.1103/PhysRevB.63.085411.
  • Bilge, M. A DFT Investigation of the Interaction of B- and Al-Doped C60 Fullerenes with Cyclopropylpipezarine. J. Struct. Chem. 2018, 59, 1271–1275. DOI: 10.1134/S0022476618060045.
  • Kandalam, A. K.; Blanco, M. A.; Pandey, R. Theoretical Study of Structural and Vibrational Properties of Al3N3, Ga3N3, and In3N3. J. Phys. Chem. B. 2001, 105, 6080–6084. DOI: 10.1021/jp004404p.
  • Tahmasebi, E.; Shakerzadeh, E.; Biglari, Z. Theoretical Assessment of the Electro-Optical Features of the Group III Nitrides (B12N12, Al12N12 and Ga12N12) and Group IV Carbides (C24, Si12C12 and Ge12C12) Nanoclusters Encapsulated with Alkali Metals (Li, Na and K). Appl. Surf. Sci 2016, 363, 197–208. DOI: 10.1016/j.apsusc.2015.12.001.
  • Zhang, F.; Wu, Q.; Wang, X.; Liu, N.; Yang, J.; Hu, Y.; Yu, L.; Wang, X.; Hu, Z.; Zhu, J. 6-Fold-Symmetrical AlN Hierarchical Nanostructures: Synthesis and Field-Emission Properties. J. Phys. Chem. C. 2009, 113, 4053–4058. DOI: 10.1021/jp811484r.
  • Shabani, M.; Ghiasi, R.; Zarea, K.; Fazaeli, R. Quantum Chemical Study of Interaction between Titanocene Dichloride Anticancer Drug and Al12N12 Nano-Cluster Russ. J. Inorg. Chem. 2020, 65, 1726–1734. DOI: 10.1134/S0036023620110169.
  • Palomino-Asencio, L.; García-Hernández, E.; Salazar-Villanueva, M.; Chigo-Anota, E. B12N12 Nanocages with Homonuclear Bonds as a Promising Material in the Removal/Degradation of the Insecticide Imidacloprid. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 126, 114456. DOI: 10.1016/j.physe.2020.114456.
  • Pino-Rios, R.; Chigo-Anota, E.; Shakerzadeh, E.; Cárdenas-Jirón, G. B12N12 Cluster as a Collector of Noble Gases: A Quantum Chemical Study. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 115, 113697. DOI: 10.1016/j.physe.2019.113697.
  • Escobedo-Morales, A.; Tepech-Carrillo, L.; Bautista-Hernández, A.; Camacho-García, J. H.; Cortes-Arriagada, D.; Chigo-Anota, E. Effect of Chemical Order in the Structural Stability and Physicochemical Properties of B12N12 Fullerenes. Sci. Rep. 2019, 9, 16521. DOI:
  • Ayub, K. Binding Affinity and Permeation of X12Y12 Nanoclusters for Helium and Neon. J. Mol. Liq. 2017, 244, 124–134. DOI: 10.1016/j.molliq.2017.08.118.
  • Ayub, K. Transportation of Hydrogen Atom and Molecule through X12Y12 Nano-Cages. Int. J. Hydrogen Energy 2017, 42, 11439–11451. DOI: 10.1016/j.ijhydene.2017.02.202.
  • Beheshtian, J.; Bagheri, Z.; Kamfiroozi, M.; Ahmadi, A. A Comparative Study on the B12N12, Al12N12, B12P12 and Al12P12 Fullerene-like Cages. J. Mol. Model. 2012, 18, 2653–2658. DOI: 10.1007/s00894-011-1286-y.
  • Rad, A. S.; Ayub, K. A Comparative Density Functional Theory Study of Guanine Chemisorption on Al12N12, Al12P12, B12N12, and B12P12 Nano-Cages. J. Alloys Compds. 2016, 672, 161–169. DOI: 10.1016/j.jallcom.2016.02.139.
  • Hussain, S.; Chatha, S. A. S.; Hussain, A. I.; Hussain, R.; Mehboob, M. Y.; Gulzar, T.; Mansha, A.; Shahzad, N.; Ayub, K. Designing Novel Zn-Decorated Inorganic B12P12 Nanoclusters with Promising Electronic Properties: A Step Forward toward Efficient CO2 Sensing Materials. ACS Omega. 2020, 5, 15547–15556. DOI: 10.1021/acsomega.0c01686.
  • Rad, A. S.; Ayub, K. Adsorption of Pyrrole on Al12N12, Al12P12, B12N12, and B12P12 Fullerene-like Nano-Cages; a First Principles Study. Vacuum 2016, 131, 135–141. DOI: 10.1016/j.vacuum.2016.06.012.
  • Ullah, F.; Irshad, S.; Khan, S.; Hashmi, M. A.; Ludwig, R.; Mahmood, T.; Ayub, K. Nonlinear Optical Response of First-Row Transition Metal Doped Al12P12 Nanoclusters; A First-Principles Study. J. Phys. Chem. Solids 2021, 151, 109914. DOI: 10.1016/j.jpcs.2020.109914.
  • Irshad, S.; Ullah, F.; Khan, S.; Ludwig, R.; Mahmood, T.; Ayub, K. First Row Transition Metals Decorated Boron Phosphide Nanoclusters as Nonlinear Optical Materials with High Thermodynamic Stability and Enhanced Electronic Properties; A Detailed Quantum Chemical Study. Opt. Laser Technol. 2021, 134, 106570. DOI: 10.1016/j.optlastec.2020.106570.
  • Ullah, F.; Kosar, N.; Maria, A. A.; Mahmood, T.; Ayub, K. Alkaline Earth Metal Decorated Phosphide Nanoclusters for Potential Applications as High Performance NLO Materials; A First Principle Study. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 118, 113906. DOI: 10.1016/j.physe.2019.113906.
  • Ullah, F.; Kosar, N.; Ayub, K.; Mahmood, T. Superalkalis as a Source of Diffuse Excess Electrons in Newly Designed Inorganic Electrides with Remarkable Nonlinear Response and Deep Ultraviolet Transparency: A DFT Study. Appl. Surf. Sci. 2019, 483, 1118–1128. DOI: 10.1016/j.apsusc.2019.04.042.
  • Sajjad, S.; Hashmi, M. A.; Mahmood, T.; Ayub, K. Permeation of Second Row Neutral Elements through Al12P12 and B12P12 Nanocages; A First-Principles Study. J. Mol. Graph. Model. 2020, 101, 107748. DOI: 10.1016/j.jmgm.2020.107748.
  • Beheshtian, J.; Kamfiroozi, M.; Bagheri, Z.; Ahmadi, A. Theoretical Study of Hydrogen Adsorption on the B12P12 Fullerene-like Nanocluster. Comput. Mater. Sci. 2012, 54, 115–118. DOI: 10.1016/j.mejo.2011.10.010.
  • Ghanbari, H.; Cousins, B. G.; Seifalian, A. M. A Nanocage for Nanomedicine: Polyhedral Oligomeric Silsesquioxane (POSS)). Macromol. Rapid Commun. 2011, 32, 1032–1046. DOI: 10.1002/marc.201100126.
  • Perveen, M.; Nazir, S.; Arshad, A. W.; Khan, M. I.; Shamim, M.; Ayub, K.; Khan, M. A.; Iqbal, J. Therapeutic Potential of Graphitic Carbon Nitride as a Drug Delivery System for Cisplatin (Anticancer Drug): A DFT Approach. Biophys. Chem. 2020, 267, 106461. DOI: 10.1016/j.bpc.2020.106461.
  • Tariq, A.; Nazir, S.; Arshad, A. W.; Nawaz, F.; Ayub, K.; Iqbal, J. DFT Study of the Therapeutic Potential of Phosphorene as a New Drug-Delivery System to Treat Cancer. RSC Adv. 2019, 9, 24325–24332. DOI: 10.1039/C9RA02778E.
  • Ghiasi, R.; Sofiyani, M. V.; Emami, R. Computational Investigation of Interaction of Titanocene Dichloride anti-Cancer Drug with Carbon Nanotube in Presence of External Electric Field. Biointerface Res. Appl. Chem. 2021, 11, 12454–12461. DOI: 10.33263/BRIAC114.1245412461..
  • Borowiak-Palen, E.; Mendoza, E.; Bachmatiuk, A.; Rummeli, M. H.; Gemming, T.; Nogues, J.; Skumryev, V.; Kalenczuk, R. J.; Pichler, T.; Silva, S. R. P. Iron Filled Single-Wall Carbon Nanotubes – A Novel Ferromagnetic Medium. Chem. Phys. Lett. 2006, 421, 129–133. DOI: 10.1016/j.cplett.2006.01.072.
  • Khlobystov, A. N.; Britz, D. A.; Briggs, G. A. D. Molecules in Carbon Nanotubes. Acc. Chem. Res. 2005, 38, 901–909. DOI: 10.1021/ar040287v.
  • Yanagi, K.; Miyata, Y.; Kataura, H. Highly Stabilized β‐Carotene in Carbon Nanotubes. Adv. Mater. 2006, 18, 437–441. DOI: 10.1002/adma.200501839.
  • Houston, S. A.; Venkataramanan, N. S.; Suvitha, A.; Wheate, N. J. Loading of a Phenanthroline-Based Platinum (ii) Complex onto the Surface of a Carbon Nanotube via π–π Stacking. Aust. J. Chem. 2016, 69, 1124–1129. DOI: 10.1071/CH16067.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalman, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford CT, 2009.
  • Hay, P. J. Basis Sets for Molecular Calculations – Representation of 3D Orbitals in Transition-Metal Atoms. J. Chem. Phys. 1977, 66, 4377–4384. DOI: 10.1063/1.433731.
  • Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. 1980, 72, 650–654. DOI: 10.1063/1.438955.
  • McLean, A. D.; Chandler, G. S. Contracted Gaussian-Basis Sets for Molecular Calculations. 1. 2nd Row Atoms, Z = 11-18. J. Chem. Phys. 1980, 72, 5639–5648. DOI: 10.1063/1.438980.
  • Wachters, A. J. H. Gaussian Basis Set for Molecular Wavefunctions Containing Third-Row Atoms. J. Chem. Phys. 1970, 52, 1033–1036. DOI: 10.1063/1.1673095.
  • Hay, P. J.; Wadt, W. R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals. J. Chem. Phys. 1985, 82, 299–310. DOI: 10.1063/1.448975.
  • Hay, P. J.; Wadt, W. R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg. J. Chem. Phys. 1985, 82, 284–299. DOI: 10.1063/1.448799..
  • Schäfer, A.; Horn, H.; Ahlrichs, R. Fully Optimized Contracted Gaussian Basis Sets for Atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571–2577. DOI: 10.1063/1.463096.
  • Hay, P. J.; Wadt, W. R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283. DOI: 10.1063/1.448799.
  • Chai, J. D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. DOI: 10.1039/B810189B.
  • O'Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. Cclib: A Library for Package-Independent Computational Chemistry Algorithms. J. Comput. Chem. 2008, 29, 839–845. DOI: 10.1002/jcc.20823.
  • Liu, S. Steric Effect: A Quantitative Description from Density Functional Theory. J. Chem. Phys. 2007, 126, 244103. DOI: 10.1063/1.2747247.
  • Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. DOI: 10.1002/jcc.22885.
  • Lu, T.; Chen, F. Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. J. Mol. Graph. Model. 2012, 38, 314–323. DOI: 10.1016/j.jmgm.2012.07.004.
  • Kim, T.; Park, H. Computational Prediction of Octanol-Water Partition Coefficient Based on the Extended Solvent-Contact Model. J. Mol. Graph. Model. 2015, 60, 108–117. DOI: 10.1016/j.jmgm.2015.06.004.
  • Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A. 1998, 102, 1995–2001. DOI: 10.1021/jp9716997.
  • Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. J. Comput. Chem. 2003, 24, 669–681. DOI: 10.1002/jcc.10189.
  • Breneman, C. M.; Wiberg, K. B. Determining Atom-Centered Monopoles from Molecular Electrostatic Potentials - the Need for High Sampling Density in Formamide Conformational-Analysis. J. Comput. Chem. 1990, 11, 361–373. DOI: 10.1002/jcc.540110311.
  • Simon, S.; Duran, M.; Dannenberg, J. J. How Does Basis Set Superposition Error Change the Potential Surfaces for Hydrogen Bonded Dimers? J. Chem. Phys. 1996, 105, 11024–11031. DOI: 10.1063/1.472902.
  • Padmanabhan, J.; Parthasarathi, R.; Subramanian, V.; Chattaraj, P. K. Electrophilicity-Based Charge Transfer Descriptor. J. Phys. Chem. A. 2007, 111, 1358–1361. DOI: 10.1021/jp0649549.
  • Pearson, R. G. A Convenient Method for the Reduction of Ozonides to Alcohols with Borane-Dimethyl Sulfide Complex. J. Org. Chem. 1989, 54, 1430–1432. DOI: 10.1021/jo00267a035..
  • Parr, R. G.; Pearson, R. G. Absolute Hardness: companion Parameter to Absolute Electronegativity. J. Am. Chem. Soc. 1983, 105, 7512–7516. DOI: 10.1021/ja00364a005.
  • Geerlings, P.; Proft, F. D.; Langenaeker, W. Conceptual Density Functional Theory. Chem. Rev. 2003, 103, 1793–1874. DOI: 10.1021/cr990029p.
  • Parr, R. G.; Szentpály, L. v.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922–1924. DOI: 10.1021/ja983494x.
  • Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, New York, 1989.
  • Sobczyk, L.; Grabowski, S. J.; Krygowski, T. M. Interrelation between H-Bond and Pi-Electron delocalization. Chem. Rev. 2005, 105, 3513–3560. DOI: 10.1021/cr030083c.
  • Bader, R. F. W.; Matta, C. F.; CortéS-Guzman, F. Where to Draw the Line in Defining a Molecular Structure. Organometallics 2004, 23, 6253–6263. DOI: 10.1021/om049450g.
  • Fradera, X.; Austen, M. A.; Bader, R. F. W. The Lewis Model and Beyond. J. Phys. Chem. A. 1999, 103, 304–314. DOI: 10.1021/jp983362q.
  • Bader, R. F. W.; Fang, D.-F. Properties of Atoms in Molecules: Caged Atoms and the Ehrenfest Force. J. Chem. Theory Comput . 2005, 1, 403–414. DOI: 10.1021/ct049839l.
  • Mitrasinovic, P. M. Acrylonitrile (an)–Cu9(100) Interfaces: Electron Distribution and Nature of Bonded Interactions. Can. J. Chem. 2003, 81, 542–554. DOI: 10.1139/v03-043.
  • Lu, F.; Li, X.; Sun, Z.; Zeng, Y.; Meng, L. Influences of the Substituents on the M-M Bonding in Cp4Al4 and Cp2M2X2 (M = B, Al, Ga; Cp = C5H5, X = halogen)). Dalton Trans. 2015, 44, 14092–14100. DOI: 10.1039/c5dt01901j.
  • Palusiak, M. Substituent Effect in Para Substituted Cr(CO)5–Pyridine Complexes. J. Organometal. Chem. 2007, 692, 3866–3873. DOI: 10.1016/j.jorganchem.2007.05.029.
  • Macchi, P.; Sironi, A. Chemical Bonding in Transition Metal Carbonyl Clusters: Complementary Analysis of Theoretical and Experimental Electron Densities. Coord. Chem. Rev. 2003, 238-239, 383–412. DOI: 10.1016/S0010-8545(02)00252-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.