622
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, characterization, and photophysical properties of cyclotriphosphazenes containing quinoline-4-aldehyde-p-oxyanil moieties

, , &
Pages 760-768 | Received 15 Jan 2021, Accepted 19 Apr 2021, Published online: 05 May 2021

References

  • Puchtler, H.; Meloan, S. On Schiff's Bases and Aldehyde-Fuchsin: A Review. Histochemistry 1981, 72, 321–332. DOI: 10.1007/BF00501774.
  • Mesbah, M.; Douadi, T.; Sahli, F.; Issaadi, S.; Boukazoula, S.; Chafaa, S. Synthesis, Characterization, Spectroscopic Studies and Antimicrobial Activity of Three New Schiff Bases Derived from Heterocyclic Moiety. J. Mol. Struct. 2018, 1151, 41–48. DOI: 10.1016/j.molstruc.2017.08.098.
  • Güngör Özdemir, Ö. Intramolecular Proton Transfer Equilibrium in Salicylidene- and Naphthalene-Based Tetraimine Schiff Bases. Gazi Univ. J. Sci. 2017, 30, 191–214.
  • Cao, C.‐T.; Zhou, W.; Cao, C. Abnormal Effect of Hydroxyl on the Longest Wavelength Maximum in Ultraviolet Absorption Spectra for Bis‐Aryl Schiff Bases. J. Phys. Org. Chem. 2016, 1–8. DOI: 10.1002/poc.3672.
  • Gondia, N. K.; Sharma, S. K. Comparative Optical Studies of Naphthalene Based Schiff Base Complexes for Colour Tunable Application. Mater. Chem. Phys. 2019, 224, 314–319. DOI: 10.1016/j.matchemphys.2018.12.014.
  • Shanty, A. A.; Philip, J. E.; Sneha, E. J.; Kurup, M. R. P.; Balachandran, S.; Mohanan, P. V. Synthesis, Characterization and Biological Studies of Schiff Bases Derived from Heterocyclic Moiety. Bioorg. Chem. 2017, 70, 67–73. DOI: 10.1016/j.bioorg.2016.11.009.
  • Adachi, K. Benzylideneanilines for Used as Liquid Crystals. Japanese Patent JP 54005934, 1979.
  • İbişoğlu, H.; Kılıç, Z.; Yuksel, F.; İbişoğlu, H.; Tümay, S. O. Synthesis, Characterization, Photophysical and Intramolecular Energy Transfer Properties of Oxy-Naphthylchalcone Appended Cyclotriphosphazene Cores. J. Lumin. 2020, 222, 117125. DOI: 10.1016/j.jlumin.2020.117125.
  • Doğan, S.; Tümay, S. O.; Balcı Mutlu, C.; Yeşilot, S. Synthesis of New Cyclotriphosphazene Derivatives Bearing Schiff Bases and Their Thermal and Absorbance Properties. Turk J. Chem. 2020, 44, 31–47. DOI: 10.3906/kim-1905-60.
  • Tümay, S. O.; Uslu, A.; Ardıç Alidağı, H.; Kazan, H. H.; Bayraktar, C.; Yolaçan, T.; Durmuş, M.; Yeşilot, S. A Systematic Series of Fluorescence Chemosensors with Multiple Binding Sites for Hg (II) Based on Pyrenyl-Functionalized Cyclotriphosphazenes and Their Application in Live Cell Imaging. New J. Chem. 2018, 42, 14219–14228. DOI: 10.1039/C8NJ02482K.
  • Davarcı, D.; Tümay, S. O.; Şenkuytu, E.; Wörle, M.; Zorlu, Y. New One-Dimensional Mercury(II) Coordination Polymers Built up from Dispiro-Dipyridyloxy-Cyclotriphosphazene: Structural, Thermal and UV–Vis Absorption Properties. Polyhedron 2019, 161, 104–110. DOI: 10.1016/j.poly.2019.01.010.
  • Çetindere, S.; Tümay, S. O.; Şenocak, A.; Kılıç, A.; Durmuş, M.; Demirbaş, E.; Yeşilot, S. Novel pyrene-BODIPY Dyes Based on Cyclotriphosphazene Scaffolds: Synthesis, Photophysical and Spectroelectrochemical Properties. Inorg. Chim. Acta 2019, 494, 132–140. DOI: 10.1016/j.ica.2019.05.022.
  • Alidağı Ardıç, H.; Hacıvelioğlu, F.; Tümay, S. O.; Çoşut, B.; Yeşilot, S. Synthesis and Spectral Properties of Fluorene Substituted Cyclic and Polymeric Phosphazenes. Inorg. Chim. Acta 2017, 457, 95–102. DOI: 10.1016/j.ica.2016.12.013.
  • Rout, K.; Manna, A. K.; Sahu, M.; Patra, G. K. A Guanidine Based Bis Schiff Base Chemosensor for Colorimetric Detection of Hg(II) and Fluorescent Detection of Zn(II) Ions. Inorg. Chim. Acta 2019, 486, 733–741. DOI: 10.1016/j.ica.2018.11.021.
  • Lam, P.; Kan, C.; Yuen, M. C.; Cheung, S.; Gambari, R.; Lam, K.; Tang, J. C.; Chui, C. Studies on Quinoline Type Dyes and Their Characterisation Studies on Acrylic Fabric. Color. Technol. 2012, 128, 192–198. DOI: 10.1111/j.1478-4408.2012.00363.x.
  • Narwal, S.; Kumar, S.; Verma, R. P. K. Synthesis and Therapeutic Potential of Quinoline Derivative. Res. Chem. Intermed. 2017, 43, 2765–2798. DOI: 10.1007/s11164-016-2794-2.
  • Ramsey, V. G.; Baldwin, W. E.; Tipson, R. S. Studies in the Quinoline Series. VI. Synthesis of Certain 4-Substituted Quinoline Derivatives. J. Am. Chem. Soc. 1947, 69, 67–70. DOI: 10.1021/ja01193a017.
  • Posokhov, Y.; Kuş, M.; Biner, H.; Gümüş, M. K.; Tuğcu, F. T.; Aydemir, E.; Kaban, S.; Içli, S. Spectral Properties and Complex Formation with Cu2+ Ions of 2- and 4-(N-Arylimino)-Quinolines. J. Photochem. Photobiol. A 2004, 161, 247–254. DOI: 10.1016/j.nainr.2003.08.005.
  • Katayanagi, M. Preparation of Anil and Anilino Dyes from Aromatic Heterocyclic Ammonium Salts. Yakugaku Zasshi 1949, 69, 240–243. DOI: 10.1248/yakushi1947.69.5_240.
  • Aslan, F.; Öztürk, A. İ.; Binici, M. Organocyclotriphosphazenes with Poly Schiff Bases and Aldehydes from Hexachlorocyclotriposphazene, 5-Chloro-Salicylaldehyde and 5-Bromo-Salicylaldehyde under the Room Conditions without Using Ar or N2 Atmosphere. Inorg. Chim. Acta 2020, 502, 119308. DOI: 10.1016/j.ica.2019.119308.
  • Doğan, S.; Mutlu Balcı, C.; Şenocak, A.; Beşli, S. Cu(II) Complexes of Cyclotriphosphazene Bearing Schiff Bases: Synthesis, Structural Characterization, DFT Calculations, Absorbance and Thermal Properties. Polyhedron 2020, 183, 114541. DOI: 10.1016/j.poly.2020.114541.
  • Chelike, D. K.; Alagumalai, A.; Acharya, J.; Kumar, P.; Sarkar, K.; Thangavelu, S. A. G.; Chandrasekhar, V. Functionalized Iron Oxide Nanoparticles Conjugate of Multi-Anchored Schiff’s Base Inorganic Heterocyclic Pendant Groups: Cytotoxicity Studies. Appl. Surf. Sci. 2020, 501, 143963. DOI: 10.1016/j.apsusc.2019.143963.
  • Wang, H.; Du, X.; Wang, S.; Du, Z.; Wang, H.; Cheng, X. Improving the Flame Retardancy of Waterborne Polyurethanes Based on the Synergistic Effect of P–N Flame Retardants and a Schiff Base. RSC Adv. 2020, 10, 12078–12088. DOI: 10.1039/D0RA01230K.
  • Xu, M.-J.; Xu, G.-R.; Leng, Y.; Li, B. Synthesis of a Novel Flame Retardant Based on Cyclotriphosphazene and DOPO Groups and Its Application in Epoxy Resins. Polym. Degrad. Stab. 2016, 123, 105–114. DOI: 10.1016/j.polymdegradstab.2015.11.018.
  • Jamain, Z.; Khairuddean, M.; Saidin, S. A. Synthesis and Characterization of 1,4-Phenylenediamine Derivatives Containing Hydroxyl and Cyclotriphosphazene as Terminal Group. J. Mol. Struct. 2019, 1186, 293–302. DOI: 10.1016/j.molstruc.2019.02.013.
  • Xu, J.; Ling, T. C.; He, C. Hydrogen Bond‐Directed Self‐Assembly of Peripherally Modified Cyclotriphosphazenes with a Homeotropic Liquid Crystalline Phase. J. Polym. Sci. A Polym. Chem. 2008, 46, 4691–4703. DOI: 10.1002/pola.22800.
  • He, Q.; Dai, H.; Tan, X.; Cheng, X.; Liu, F.; Tschierske, C. Synthesis and Characterization of Room Temperature Columnar Mesogens of Cyclotriphosphazene with Schiff Base Units. J. Mater. Chem. C 2013, 1, 7148–7154. DOI: 10.1039/c3tc31371a.
  • Aslan, F.; Öztürk, A. İ.; Söylemez, B. Synthesis of Fluorescence Organocyclotriphosphazene Derivatives Having Functional Groups Such as Formyl, Schiff Base and Both Formyl and Schiff Base without Using Ar or N2 Atmosphere. J. Mol. Struct. 2017, 1137, 387–395. DOI: 10.1016/j.molstruc.2017.01.047.
  • Khatri, P. K.; Jain, S. L. Multiple Oxo-Vanadium Schiff Base Containing Cyclotriphosphazene as a Robust Heterogeneous Catalyst for Regioselective Oxidation of Naphthols and Phenols to Quinones. Catal. Lett. 2012, 142, 1020–1025. DOI: 10.1007/s10562-012-0852-y.
  • Çil, E.; Tanyildizi, M. A.; Ozen, F.; Boybay, M.; Arslan, M.; Görgülü, A. O. Synthesis, Characterization, and Biological–Pharmacological Evaluation of New Phosphazenes Bearing Dioxybiphenyl and Schiff Base Groups. Arch. Pharm. Chem. Life Sci. 2012, 345, 476–485. DOI: 10.1002/ardp.201100412.
  • Öztürk, A. İ.; Aslan, F.; Yılmaz, Ö.; Alğın, M.; Arslan, M.; Mutlu, H. İ. Synthesis, Characterization, and Spectroscopic Properties of Hexa(4-Bromo-2-Formyl-Phenoxy)Cyclotriphosphazene and Hexa(4-Chloro-2-Formyl-Phenoxy)Cyclotriphosphazene and Fully Substituted Cyclotriphosphazene Derivatives Bearing a Schiff Base at Room Temperature Phosphorus. Sulfur Silicon Relat. Elem. 2013, 188, 585–595. DOI: 10.1080/10426507.2012.692132.
  • Thilagar, P.; Sudhakar, P.; Swamy, P. C. A.; Mukherjee, S. Synthesis and Spectral Characterization of Cyclotriphosphazene Based 18-Membered Macrocycles. Inorg. Chim. Acta 2012, 390, 163–166. DOI: 10.1016/j.ica.2012.03.016.
  • Tümer, Y.; Yuksektepe, Ç.; Batı, H.; Çalışkan, N.; Büyükgüngör, O. Preparation and Characterization of Hexakis[2-Methoxy-4-(2,3-Dimethylphenylimino)Phenylato] Cyclotriphosphazene. Phosphorus Sulfur Silicon Relat. Elem. 2010, 185, 2449–2454. DOI: 10.1080/10426501003692078.
  • Aslan, F.; Demirpence, Z.; Tatsiz, R.; Turkmen, H.; Ozturk, A. I.; Arslan, M. The Synthesis, Characterization and Photophysical Properties of Some New Cyclotriphosphazene Derivatives Bearing Schiff Base. Z Anorg. Allg. Chem. 2008, 634, 1140–1144. DOI: 10.1002/zaac.200700586.
  • Chandrasekhar, V.; Thangavelu, G.; Andavan, S.; Azhakar, R.; Pandian, B. M. Cyclophosphazene-Supported Tetranuclear Copper Assembly Containing 15 Contiguous Inorganic Rings. Inorg. Chem. 2008, 47, 1922–1924. DOI: 10.1021/ic702500n.
  • Chandrasekhar, V.; Andavan, G. T. S.; Azhakar, R.; Pandian, B. M. 36- and 42-Membered Cyclophosphazene-Containing Macrocycles. Tetrahedron Lett. 2006, 47, 8365–8368. DOI: 10.1016/j.tetlet.2006.09.080.
  • Siwy, M.; Sęk, D.; Kaczmarczyk, B.; Jaroszewicz, I.; Nasulewicz, A.; Pelczyska, M.; Nevozhay, D.; Opolski, A. Synthesis and in Vitro Antileukemic Activity of Some New 1,3-(Oxytetraethylenoxy)Cyclotriphosphazene Derivatives. J. Med. Chem. 2006, 49, 806–810. DOI: 10.1021/jm0490078.
  • Siwy, M.; Sęk, D.; Kaczmarczyk, B.; Wietrzyk, J.; Nasulewicz, A.; Opolski, A. Synthesis and in Vitro Antiproliferative Activity of New 1,3-(Oxytetraethylenoxy)-Cyclotriphosphazene Derivatives. Anticancer Res. 2007, 27, 1553–1558.
  • Allcock, H. R.; Austin, P. E. Schiff Base Coupling of Cyclic and High-Polymeric Phosphazenes to Aldehydes and Amines: Chemotherapeutic Models. Macromolecules 1981, 14, 1616–1622. DOI: 10.1021/ma50007a002.
  • Moriya, K.; Kawanishi, Y.; Yano, S.; Kajiwara, M. Mesomorphic Phase Transition of a Cyclotetraphosphazene Containing Schiff Base Moieties: Comparison with the Corresponding Cyclotriphosphazene. Chem. Commun. 2000, 1111–1112. DOI: 10.1039/b000497i.
  • Odabaşoğlu, M.; Turgut, G.; Karaer, H. Preparation and Characterization of Chromophor Group Containing Cyclotriphosphazenes. I. Imino Chromophor Carrying Some Cyclotriphosphazenes. Phosphorus, Sulfur Silicon Relat. Elem. 1999, 152, 9–25. DOI: 10.1080/10426509908031613.
  • Bertani, R.; Facchin, G.; Gleria, M. Organometallic and Coordination Chemistry on Phosphazenes Part I. Zn(II), Pd(II) and Pt(II) Complexes on Schiff Base-Containing Cyclophosphazenes. Inorg. Chim. Acta 1989, 165, 73–82. DOI: 10.1016/S00201693(00)83403-9.
  • Correia, F. C.; Santos, T. C. F.; Garcia, J. R.; Peres, L. O.; Wang, S. H. Synthesis and Characterization of a New Semiconductor Oligomer Having Quinoline and Fluorene Units. J. Braz. Chem. Soc. 2015, 26, 84–91. DOI: 10.5935/0103-5053.20140217.
  • Özcan, E.; Tümay, S. O.; Keşan, G.; Yeşilot, S.; Çoşut, B. The Novel Anthracene Decorated Dendrimeric Cyclophosphazenes for Highly Selective Sensing of 2,4,6-Trinitrotoluene (TNT). Spectrochim. Acta Part A 2019, 220, 117115. DOI: 10.1016/j.saa.2019.05.020.
  • Ardıç, A.; Tümay, H.; Şenocak, S. O.; Çiftbudak, A.; Çoşut, Ö. F.; Yeşilot, B. S. Constitutional Isomers of Dendrimer-like Pyrene Substituted Cyclotriphosphazenes: synthesis, Theoretical Calculations, and Use as Fluorescence Receptors for the Detection of Explosive Nitroaromatics. New J. Chem. 2019, 43, 16738–16747. DOI: 10.1039/C9NJ03695D.
  • Yeşilot, S.; Çoşut, B.; Alidağı Ardıç, H.; Hacıvelioğlu, F.; Özpınar Altınbaş, G.; Kılıç, A. Intramolecular Excimer Formation in Hexakis(Pyrenyloxy)Cyclotriphosphazene: photophysical Properties, Crystal Structure, and Theoretical Investigation. Dalton Trans. 2014, 43, 3428–3433. DOI: 10.1039/c3dt52957f.
  • Tümay, S. O.; Irani-Nezhad, M. H.; Khataee, A. Design of Novel Anthracene-Based Fluorescence Sensor for Sensitive and Selective Determination of Iron in Real Samples. J. Photochem. Photobiol. A 2020, 402, 112819. DOI: 10.1016/j.jphotochem.2020.112819.
  • Yazdanbakhsh, M. R.; Mohammadi, A. Synthesis, Substituent Effects and Solvatochromic Properties of Some Disperse Azo Dyes Derived from N-Phenyl-2, 2′-Iminodiethanol. J. Mol. Liq 2009, 148, 35–39. DOI: 10.1016/j.molliq.2009.06.001.
  • Dkaki, M.; Ait-Lyazidi, S.; Haddad, M.; Hnach, M.; Cazeau-Dubroca, C.; Aycard, J. P. Concentration Effect on the Absorption and Emission Spectra of the 9-Oxa-2,3,4‘-Methoxybenzobicyclo [4.3.0]Non-1(6)-Ene-7,8-Dione: Self-Associated Dimer and Excimer. J. Phys. Chem. A 1998, 102, 5275–5279. DOI: 10.1021/jp970151x.
  • Tümay, S. O.; Sarıkaya Yıldırım, S.; Yeşilot, S. Novel Iron(III) Selective Fluorescent Probe Based on Synergistic Effect of Pyrene-Triazole Units on a Cyclotriphosphazene Scaffold and Its Utility in Real Samples. J. Lumin. 2018, 196, 126–135. DOI: 10.1016/j.jlumin.2017.12.019.
  • Du, Y.; Chen, M.; Zhang, Y.; Luo, F.; He, C.; Li, M.; Chen, X. Determination of Iron(III) Based on the Fluorescence Quenching of Rhodamine B Derivative. Talanta 2013, 106, 261–265. DOI: 10.1016/j.talanta.2012.10.078.
  • Melhuish, W. H. Quantum Efficiencies of Fluorescence of Organic Substances: effect of Solvent and Concentration of the Fluorescent Solute. J. Phys. Chem. 1961, 65, 229–235. DOI: 10.1021/j100820a009.
  • Carriedo, G. A.; Fernández-Catuxo, L.; Alonso, F. J. G.; Gómez-Elipe, P.; González, P. A. Preparation of a New Type of Phosphazene High Polymers Containing 2,2′-Dioxybiphenyl Groups. Macromolecules 1996, 29, 5320–5325. DOI: 10.1021/ma951830d.
  • Fery-Forgues, S.; Lavabre, D. Are Fluorescence Quantum Yields so Tricky to Measure? A Demonstration Using Familiar Stationery Products. J. Chem. Educ. 1999, 76, 1260–1264. DOI: 10.1021/ed076p1260.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.