160
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of a straightforward and efficient protocol for the one-pot multicomponent synthesis of substituted alpha-aminoallylphosphonates under catalyst-free condition

ORCID Icon, , &
Pages 769-779 | Received 01 Feb 2021, Accepted 18 Apr 2021, Published online: 06 May 2021

References

  • (a) Kaur, G.; Shamim, M.; Bhardwaj, V.; Gupta, V. K.; Banerjee, B. Mandelic Acid Catalyzed One-Pot Three-Component Synthesis of α-Aminonitriles and α-Aminophosphonates under Solvent-Free Conditions at Room Temperature. Synth. Commun. 2020, 50, 1545–1560. (b) Zeng, Z.-G.; Liu, Niu; Fei, L.; Jiang, X.-Y.; Xu, H.-H. Synthesis and Antiphytoviral Activity of α-Aminophosphonates Containing 3,5-Diphenyl-2-Isoxazoline as Potential Papaya Ringspot Virus Inhibitors. Mol. Divers. 2019, 23, 393–401. DOI: 10.1007/s11030-018-9877-5. (c) Brahmachari, G. P-Chemistry at Ambient Conditions; A Recent Update. In New Developments in Organophosphorus Chemistry; Keglevich G., Ed.; DeGruyter: Germany, pp 214–231, 2018. Chapter-11. (d) Brahmachari, G. Microwave-Assisted Hirao and Kabachnik-Fields Phosphorus–Carbon Bond Forming Reactions: A Recent Update. In. Microwave Science, Banik, B. K., Ed.; CRC Press: USA, 2019; pp 293–325. (e) Lan, X.; Xie, D.; Yin, L.; Wang, Z.; Chen, J.; Zhang, A.; Song, B.; Hu, D. Novel α,β-Unsaturated Amide Derivatives Bearing α-Amino Phosphonate Moiety as Potential Antiviral Agents. Bioorg. Med. Chem. Lett. 2017, 27, 4270–4273. DOI: 10.1016/j.bmcl.2017.08.048. (f) Subramanyam, C.; Basha, Sk. T.; Madhava, G.; Rasool, Sk. N.; Adam, Sk.; Murthy S. D. S.; Naga Raju, C. Synthesis, Spectral Characterization and Bioactivity Evaluation of Novel α-Aminophosphonates. Phosphorus Sulfur Silicon Rel. Elem. 2017, 192, 267–270. DOI: 10.1080/00397911.2020.1745844. (g) Brahmachari, G. Green Synthetic Approaches in Organophosphorus Chemistry: Recent Developments with Energy-Efficient Protocols. In RSC Specialist Periodical ReportOrganophosphorus Chemistry; Vol. 45, Allen, D. W., Loakes, D., Tebby, J.; Royal Society of Chemistry: UK, 2016; pp 438–491. (h) Che, J.-Y.; Xu, X.-Y.; Tang, Z.-L.; Guc, Y.-C.; Shia, D.-Q. Synthesis and Herbicidal Activity Evaluation of Novel α-Amino Phosphonate Derivatives Containing a Uracil Moiety. Bioorg. Med. Chem. Lett. 2016, 26, 1310–1313. DOI: 10.1016/j.bmcl.2016.01.010. (i) Milen, M.; Ábrányi‐Balogh, P.; Kangyal, R.; Dancsó, A.; Frigyes, D.; Keglevich, G. T3P®‐Mediated One‐Pot Synthesis of Bis(α‐Aminophosphonates). Heteroat. Chem. 2014, 25, 245–255. DOI: 10.1002/hc.21170. (j) Milen, M.; Ábrányi-Balogh, P.; Dancsó, A.; Frigyes, D.; Pongo, L.; Keglevich, G. T3P®-Promoted Kabachnik–Fields Reaction: An Efficient Synthesis of α-Aminophosphonates. Tetrahedron Lett. 2013, 54, 5430–5433. DOI: 10.1016/j.tetlet.2013.07.145.
  • (a) Allen, D. W.; Tebby, J. C.; Loakes, D. (Eds), Organophosphorus Chemistry (Specialist Periodical Reports); Vol. 45–50, Royal Society of Chemistry: Cambridge, UK, 2011–2020. (b) Wuggenig, F.; Schweifer, A.; Mereiter, K.; Hammerschmidt, F. Chemoenzymatic Synthesis of Phosphonic Acid Analogues of L‐Lysine, L‐Proline, L‐Ornithine, and L‐Pipecolic Acid of 99 % ee – Assignment of Absolute Configuration to (–)‐Proline. Eur. J. Org. Chem. 2011, 2011, 1870–1879. (c) Razaei, Z.; Friouzabadi, H.; Iranpoor, N.; Ghadri, A.; Jafari, M.; Jafari, A.; Zare, H. Design and One-Pot Synthesis of Alpha-Aminophosphonates and Bis(Alpha-Aminophosphonates) by Iron(III) Chloride and Cytotoxic Activity. Eur. J. Med. Chem. 2009, 44, 4266–4275. DOI: 10.1016/j.ejmech.2009.07.009. (d) Grembecka, J.; Mucha, A.; Cierpicki, T.; Kafarski, P. The Most Potent Organophosphorus Inhibitors of Leucine Aminopeptidase. Structure-Based Design, Chemistry, and Activity. J. Med. Chem. 2003, 46, 2641–2655. DOI: 10.1021/jm030795v. (e) Liu, W.; Royers, C. J.; Fisher, A. J.; Toney, M. Aminophosphonate Inhibitors of Dialkylglycine Decarboxylase: Structural Basis for Slow Binding Inhibition. Biochemistry, 2002, 41, 12320–12328. DOI: 10.1021/bi026318g. (f) Kukhar, V. P.; Hudson, H. R. (Eds.), Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity; Wiley: Chichester, 2000.
  • (a) Kafarski, P.; Lejczak, B. Biological Activity of Aminophosphonic Acids. Phosphorus Sulfur Silicon Relat. 1991, 63, 193–215. (b) Ouimette, D. G.; Coffey, M. D. Comparative Antifungal Activity of Four Phosphonate Compounds against Isolates of Nine Phytophthora Species. Phytopathology, 1989, 79, 761–767. DOI: 10.1094/Phyto-79-761.
  • (a) Hellal, A.; Chafaa, S.; Chafai, N.; Touafri, L. Synthesis, Antibacterial Screening and DFT Studies of Series of α-Amino-Phosphonates Derivatives from Aminophenols. J. Mol. Struct. 2017, 1134, 217–225. (b) Gokha, A. A.; Ghanim, I. M. S.; Abdel Megeed, A. E. S.; Shaban, E.; El-Tantawy, E. S. I. Synthesis and Antibacterial Activity of Novel α-Aminophosphonates Bearing a Quinoline Moiety. IJPSR. 2016, 7, 181–189. DOI: 10.13040/IJPSR.0975-8232.7(1). (c) Sonar, S. S.; Sadaphal, S. A.; Labade, V. B.; Shingate, B. B.; Shingare, M. S. An Efficient Synthesis and Antibacterial Screening of Novel Oxazepine α-Aminophosphonates by Ultrasound Approach. Phosphorus, Sulfur, Silicon Relat. Elem. 2009, 185, 65–73. DOI: 10.1016/j.molstruc.2016.12.079.
  • (a) Siénczyk, M.; Oleksyszyn, J. Irreversible Inhibition of Serine Proteases-Design and In Vivo Activity of Diaryl Alpha-Aminophosphonate Derivatives. Curr. Med. Chem., 2009, 16, 1673–1687. DOI: 10.2174/092986709788186246. (b) Xu, Y.; Yan, K.; Song, B.; Xu, G.; Yang, S.; Xue, W.; Hu, D.; Lu, P.; Ouyang, G.; Jin, L.; Chen, Z. Synthesis and Antiviral Bioactivities of α-Aminophosphonates Containing Alkoxyethyl Moieties. Molecules, 2006, 11, 666–676. DOI: 10.3390/11090666. (c) Peyman, A.; Stahl, W.; Wagner, K.; Ruppert, D.; Budt, K. H. Non-Peptide-Based Inhibitors of Human Immunodeficiency Virus-1 Protease. Bioorg. Med. Chem. Lett. 1994, 4, 2601–2604. DOI: 10.1016/S0960-894X(01)80292-4.
  • (a) Mirzaei, M.; Eshghi, H.; Rahimizadeh, M.; Bakavoli, M.; Matin, M. M.; Hosseinymehr, M.; Rudbari, H. A.; Bruno, G. An Eco‐Friendly Three Component Manifold for the Synthesis of α‐Aminophosphonates under Catalyst and Solvent‐Free Conditions, X‐Ray Characterization and Their Evaluation as Anticancer Agents. J Chin Chem Soc. 2015, 62, 1087–1096. DOI: 10.1002/jccs.201500250. (b) Fang, Y.-L.; Wu, Z.-L.; Xiao, M.-W.; Tang, Y.-T.; Li, K.-M.; Ye, J.; Xiang, J.-N.; Hu, A.-X. One-Pot Three-Component Synthesis of Novel Diethyl((2-oxo-1,2-Dihydroquinolin-3-yl)(Arylamino)Methyl)Phosphonate as Potential Anticancer Agents. Int. J. Mol. Sci. 2016, 17, 653–668. DOI:10.3390/ijms17050653. (c) Bahrami, F.; Panahi, F.; Daneshgar, F.; Yousefi, R.; Shahsavani, M. B.; Khalafi-Nezhad, A. Synthesis of New α-Aminophosphonate Derivatives Incorporating Benzimidazole, Theophylline and Adenine Nucleobases Using L-Cysteine Functionalized Magnetic Nanoparticles (LCMNP) as Magnetic Reusable Catalyst: Evaluation of Their Anticancer Properties. RSC Adv. 2016, 6, 5915–5924. (d) El-Boraey, H. A. L.; El-Gokha, A. A. A.; El-Sayed, I. E. T.; Azzam, M. A. Transition Metal Complexes of α-Aminophosphonates Part I: Synthesis, Spectroscopic Characterization, and In Vitro Anticancer Activity of Copper(II) Complexes of α-Aminophosphonates. Med. Chem. Res. 2015, 24, 2142–2153. DOI: 10.1007/s00044-014-1282-8. (e) Koteswara Rao, V.; Subba Reddy, S.; Sathish Krishna, B.; Reddy, C. S.; Reddy, N. P.; Reddy, T. C. M.; Naga Raju, C.; Ghosh, S. K. Design, Synthesis and Anti Colon Cancer Activity Evaluation of Phosphorylated Derivatives of Lamivudine (3TC). Lett. Drug Des. Discov. 2011, 8, 59–64. DOI: 10.2174/157018011793663921; (f) Kafarski, P.; Lejczak, B. Aminophosphonic Acids of Potential Medical Importance. Curr. Med. Chem. Anti-Cancer Agents 2001, 1, 301–312. DOI: 10.2174/1568011013354543.
  • Allen, M. C.; Fuhrer, W.; Tuck, B.; Wade, R.; Wood, J. M. Renin Inhibitors. Synthesis of Transition-State Analogue Inhibitors Containing Phosphorus Acid Derivatives at the Scissile Bond . J. Med. Chem. 1989, 32, 1652–1661. DOI: 10.1021/jm00127a041.
  • Mucha, A.; Kafarski, P.; Berlicki, L. Remarkable Potential of the α-Aminophosphonate/Phosphinate Structural Motif in Medicinal Chemistry. J. Med. Chem. 2011, 54, 5955–5980. DOI: 10.1021/jm200587f.
  • Grembecka, J.; Mucha, A.; Cierpicki, T.; Kafarski, P. The Most Potent Organophosphorus Inhibitors of Leucine Aminopeptidase. structure-Based Design, Chemistry, and Activity. J. Med. Chem. 2003, 46, 2641–2655. DOI: 10.1021/jm030795v.
  • (a) Jiang, Z.; Zhao, J.; Gao, B.; Chen, S.; Qu, W.; Mei, X.; Rui, C.; Ning, J.; She, D. Synthesis and Application of N-Tosyl Piperidinyl-Containing α-Aminophosphonates. Phosphorus Sulfur Silicon Relat. 2013, 188, 1026–1037. DOI: 10.1080/10426507.2012.729236. (b) Liu, J.-Z.; Song, B.-A.; Bhadury, P. S.; Hu, D.-Y.; Yang, S. Synthesis and Bioactivities of α-Aminophosphonate Derivatives Containing Benzothiazole and Thiourea Moieties. Phosphorus Sulfur Silicon Relat. 2012, 187, 61–70. DOI: 10.1080/10426507.2011.575422. (c) Reddy, M. V. N.; Balakrishna, A.; Kumar, M. A.; Reddy, G. C. S.; Sankar, A. U. R.; Reddy, C. S.; Krishna, T. M. One-Step Synthesis and Bioassay of N-Phosphoramidophosphonates. Chem. Pharm. Bull. 2009, 57, 1391–1395. DOI: 10.1248/cpb.57.1391. (d) Ghotas, E.; Sylvie, G. B.; Malcolm, J. K.; Elisabeth, D.; Jeanine, L.; Michael, S. K.; Keith, H.; Amy, H.; Albion, D. W.; Ashis, K. S.; Gerhard, H.; Barry, A. M.; William, F. W. Synthesis and Evaluation of Alkoxy-Phenylamides and Alkoxy-Phenylimidazoles as Potent Sphingosine-1-Phosphate Receptor Subtype-1 Agonists. Bioorg. Med. Chem. Lett. 2009, 19, 369–372. DOI: 10.1016/j.bmcl.2008.11.072. (e) Kaboudin, B.; Moradi, K. A Simple and Convenient Procedure for the Synthesis of 1-Aminophosphonates from Aromatic Aldehydes. Tetrahedron Lett. 2005, 46, 2989–2991. DOI: 10.1002/chin.200534234. (f) Meyer, J. H.; Barlett, P.A. Macrocyclic Inhibitors of Penicillopepsin. 1. Design, Synthesis, and Evaluation of an Inhibitor Bridged between p1 and p3. J. Am. Chem. Soc. 1998, 120, 4600–4609. DOI: 10.1021/ja973713z. (g) Atherton, F. R.; Hassal, C. H.; Lambert, R. W. Synthesis and Structure-Activity Relationships of Antibacterial Phosphonopeptides Incorporating (1-Aminoethyl)Phosphonic Acid and (Aminomethyl)Phosphonic Acid. J. Med. Chem. 1986, 29, 29–40. DOI: 10.1021/jm00151a005.
  • Rawls, R. L. Modular Enzymes. Chem. Eng. News Archive 1998, 76, 29–32. DOI: 10.1021/cen-v076n010.p029.
  • Roberts, F.; Roberts, C. W.; Johnson, J. J.; Kyle, D. E.; Krell, T.; Coggins, J. R.; Coombs, G. H.; Milhous, W. K.; Tzipori, S.; Ferguson, D. J.; et al. Evidence for the Shikimate Pathway in Apicomplexan Parasites. Nature 1998, 393, 801–805. DOI: 10.1038/31723.
  • Danila, D. C.; Wang, X. Y.; Hubble, H.; Antipin, I. S.; Pinkhassik, E. Increasing Permeability of Phospholipid Bilayer Membranes to Alanine with Synthetic Alpha-Aminophosphonate Carriers. Bioorg. Med. Chem. Lett. 2008, 18, 2320–2323. DOI: 10.1016/j.bmcl.2008.02.081.
  • (a) Naydenova, E. D.; Todorov, P.; Troev, K. Recent Synthesis of Aminophosphonic Acids as Potential Biological Importance. Amino Acids 2010, 38, 23–30. DOI: 10.1007/s00726-009-0254-7. (b) Orsini, F.; Sello G.; Sisti, M. Aminophosphonic Acids and Derivatives. Synthesis and Biological Applications. Curr. Med. Chem. 2010, 17, 264–289. DOI: 10.2174/092986710790149729.
  • (a) Brahmachari, G. Catalyst‐ and Additive‐Free Decarboxylative C‐4 Phosphorylation of Coumarin‐3‐Carboxylic Acids at Ambient Conditions. Adv. Synth. Catal. 2020, 362, 5411–5421. DOI: 10.1002/adsc.202001054. (b) Brahmachari, G.; Laskar, S. Nano-Mgo-Catalyzed One-Pot Synthesis of Phosphonate Ester Functionalized 2-Amino-3-Cyano-4H-Chromene Scaffolds at Room Temperature. Phosphorus Sulfur Silicon Relat. Elem. 2014, 189, 873–888. DOI: 10.1080/10426507.2014.903484.
  • (a) Zhao, Y.; Li, X.; Mo, F.; Li, L.; Lin, X. Highly Enantioselective Hydrophosphonylation of Imines Catalyzed by SPINOL-Phosphoric Acid. RSC Adv. 2013, 3, 11895–11901. (b) Xu, W.; Zhang, S.; Yang, S.; Jin, L.-H.; Bhadury, P. S.; Hu, D.-Y. Zhang, Y. Asymmetric Synthesis of Alpha-Aminophosphonates Using the Inexpensive Chiral Catalyst 1,1'-Binaphthol Phosphate. Molecules 2010, 15, 5782–5796. DOI: 10.3390/molecules15085782. (c) Afarinkia, K.; Cadogan, J. I. C.; Rees, C.W. Addition of Silyl Phosphites to α,β-Unsaturated Imines. Synlett 1992, 123–124. DOI: 10.1039/C3RA40958A.
  • (a) Brahmachari, G.; Mandal, M. One‐Pot Multicomponent Synthesis of a New Series of Curcumin‐Derived 4H‐Pyrans under Ambient Conditions. J. Heterocycl. Chem. 2020, 57, 744–750. DOI: 10.1002/jhet.3814. (b) Brahmachari, G.; Nurjamal, K. Development of a Water-Mediated and Catalyst-Free Green Protocol for Easy Access to a Huge Array of Diverse and Densely Functionalized Pyrido[2,3-d:6,5-d′]Dipyrimidines via One-Pot Multicomponent Reaction under Ambient Conditions. Tetrahedron Lett. 2019, 60, 1904–1908. DOI: 10.1021/acssuschemeng.7b02696. (c) Brahmachari, G.; Mandal, M.; Karmakar, I.; Nurjamal, K.; Mandal, B. Ultrasound-Promoted Expedient and Green Synthesis of Diversely Functionalized 6-Amino-5-((4-Hydroxy-2-Oxo-2H-Chromen-3-yl)(Aryl)Methyl)Pyrimidine-2,4(1H,3H)-Diones via One-Pot Multicomponent Reaction under Sulfamic Acid Catalysis at Ambient Conditions. ACS Sustainable Chem. Eng. 2019, 7, 6369–6380. DOI: 10.1021/acssuschemeng.9b00133. (d) Brahmachari, G.; Karmakar, I.; Nurjamal, K. Ultrasound-Assisted Expedient and Green Synthesis of a New Series of Diversely Functionalized 7-Aryl/Heteroarylchromeno[4,3-d]Pyrido[1,2-a]Pyrimidin-6(7H)-Ones via One-Pot Multicomponent Reaction under Sulfamic Acid Catalysis at Ambient Conditions. ACS Sustainable Chem. Eng. 2018, 6, 11018–11028. DOI: 10.1021/acssuschemeng.8b02448. (e) Brahmachari, G.; Nurjamal, K.; Karmakar, I.; Begam, S.; Nayek, N.; Mandal, B. Development of a Water-Mediated and Catalyst-Free Green Protocol for Easy Access to a Huge Array of Diverse and Densely Functionalized Pyrido[2,3-d:6,5-d′]Dipyrimidines via One-Pot Multicomponent Reaction under Ambient Conditions. ACS Sustainable Chem. Eng. 2017, 5, 9494–9505. DOI: 10.1021/acssuschemeng.7b02696. (f) Brahmachari, G.; Nayek, N. Catalyst-Free One-Pot Three-Component Synthesis of Diversely Substituted 5-aryl-2-Oxo-/Thioxo-2,3-Dihydro-1H-Benzo[6,7]Chromeno[2,3-d]Pyrimidine-4,6,11(5H)-Triones under Ambient Conditions. ACS Omega 2017, 2, 5025–5035. DOI: 10.1021/acsomega.7b00791. (g) Brahmachari, G.; Banerjee, B. Facile and Chemically Sustainable One‐Pot Synthesis of a Wide Array of Fused O‐ and N‐Heterocycles Catalyzed by Trisodium Citrate Dihydrate under Ambient Conditions. Asian J. Org. Chem. 2016, 5, 271–286. DOI: 10.1002/ajoc.201500465. (h) Brahmachari, G.; Choo, C. Y.; Ambure, P.; Roy, K. In Vitro Evaluation and In Silico Screening of Synthetic Acetylcholinesterase Inhibitors Bearing Functionalized Piperidine Pharmacophores. Bioorg. Med. Chem. 2015, 23, 4567–4575. DOI: 10.1016/j.bmc.2015.06.005. (i) Brahmachari, G. Sulfamic Acid-Catalyzed One-Pot Room Temperature Synthesis of Biologically Relevant Bis-Lawsone Derivatives. ACS Sustainable Chem. Eng. 2015, 3, 2058–2066. DOI: 10.1021/acssuschemeng.5b00325. (j) Brahmachari, G.; Banerjee, B. Facile and One-Pot Access of 3,3-Bis(Indol-3-yl)Indolin-2-Ones and 2,2-Bis(Indol-3-yl)Acenaphthylen-1(2H)-One Derivatives via an Eco-Friendly Pseudo-Multicomponent Reaction at room Temperature Using Sulfamic Acid as an Organo-Catalyst. ACS Sustainable Chem. Eng. 2014, 2, 2802–28012. DOI: 10.1021/sc500575h.
  • (a) Sheldon, R. A. Metrics of Green Chemistry and Sustainability: Past, Present, and Future. ACS Sustainable Chem. Eng. 2018, 6, 32–48. DOI: 10.1021/acssuschemeng.7b03505. (b) Abou-Shehada, S.; Mampuys, P.; Maes, B. U. W.; Clarkand, J.; Summerton, H. L. An Evaluation of Credentials of a Multicomponent Reaction for the Synthesis of Isothioureas through the Use of a Holistic CHEM21 Green Metrics Toolkit. Green Chem. 2017, 19, 249–258. DOI: 10.1039/C6GC01928E. (c) Willis, N. J.; Fisher, C. A.; Alder, C. M.; Harsanyi, A.; Shukla, L.; Adams, J. P.; Sandford, G. Sustainable Synthesis of Enantiopure Fluorolactam Derivatives by a Selective Direct Fluorination – Amidase Strategy. Green Chem. 2016, 18, 1313–1318. DOI: 10.1039/C5GC02209F. (d) Roschangar, F.; Sheldon, A.; Senanayake, C. H. Overcoming Barriers to Green Chemistry in the Pharmaceutical Industry – the Green Aspiration Level™ Concept. Green Chem. 2015, 17, 752–768. DOI: 10.1039/C4GC01563K. (e) Jiménez-González, C.; Constable, D. J. C.; Ponder, C. S. Evaluating the “Greenness” of Chemical Processes and Products in the Pharmaceutical Industry—A Green Metrics Primer. Chem. Soc. Rev. 2012, 41, 1485–1498. DOI: 10.1039/C1CS15215G. (f) Jimenez-Gonzalez, C.; Ponder, C. S.; Broxterman, Q. B.; Manley, J. B. Using the Right Green Yardstick: Why Process Mass Intensity is Used in the Pharmaceutical Industry to Drive More Sustainable Processes. Org. Process Res. Dev. 2011, 15, 912–917. DOI: 10.1021/op200097d. (g) Augé, J. A New Rationale of Reaction Metrics for Green Chemistry. Mathematical Expression of the Environmental Impact Factor of Chemical Processes. Green Chem. 2008, 10, 225–231. DOI: 10.1039/B711274B. (h) Constable, D. J. C.; Curzons, A. D.; Cunningham, V. L. Metrics to ‘Green’ Chemistry—Which Are the Best? Green Chem. 2002, 4, 521–527. DOI: 10.1039/B206169B.
  • (a) Keglevich, G.; Balint, E.; Kangyal, R.; Balint, M.; Milen, M. A Critical Overview of the Kabachnik–Fields Reactions Utilizing Trialkyl Phosphites in Water as the Reaction Medium: A Study of the Benzaldehyde‐Benzylamine Triethyl Phosphite/Diethyl Phosphite Models. Heteroat. Chem. 2014, 25, 282–289. (b) Keglevich, G.; Bálint, E. The Kabachnik–Fields Reaction: Mechanism and Synthetic Use. Molecules 2012, 17, 12821–12835. DOI: 10.1002/hc.21192. (c) Keglevich, G.; Zsuzsa Kiss, N.; Menyhárd, D. K.; Fehérvári, A.; Csontos, I. A Study on the Kabachnik–Fields Reaction of Benzaldehyde, Cyclohexylamine, and Dialkyl Phosphites. Heteroat. Chem. 2012, 23, 171–178. DOI: 10.1002/hc.20767.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.