160
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ultrasound-assisted a domino three-component reaction to polycyclic selenopyrans synthesis

, &
Pages 89-95 | Received 27 Aug 2021, Accepted 06 Oct 2021, Published online: 20 Oct 2021

References

  • (a) Nogueira, C. W.; Zeni, G.; Rocha, J. B. T. Organoselenium and Organotellurium Compounds: Toxicology and Pharmacology. Chem. Rev. 2004, 104, 6255–6286. DOI: https://doi.org/10.1021/cr0406559. (b) Sarma, B. K.; Mugesh, G. Glutathione Peroxidase (GPx)-like Antioxidant Activity of the Organoselenium Drug Ebselen: Unexpected Complications with Thiol Exchange Reactions. J. Am. Chem. Soc. 2005, 127, 11477–11485. DOI: . (c) Sarma, B. K.; Mugesh, G. Antioxidant Activity of the Anti‐Inflammatory Compound Ebselen: A Reversible Cyclization Pathway via Selenenic and Seleninic Acid Intermediates. Chem. Eur. J. 2008, 14, 10603–10614. DOI: . (d) Traiffort, E.; Ruat, M.; Arrang, J. M.; Leurs, R.; Piomelli, D.; Schwartz, J. C. Expression of a Cloned Rat Histamine H2 Receptor Mediating Inhibition of Arachidonate Release and Activation of cAMP Accumulation. Proc. Natl. Acad. Sci. 1992, 89, 2649–2653. DOI: (e) Nam, K. N.; Koketsu, M.; Lee, E. H. 5-Chloroacetyl-2-amino-1, 3-selenazoles Attenuate Microglial Inflammatory Responses through NF-κB Inhibition. Eur. J. Pharmacol. 2008, 589, 53–57. DOI: . (f) Bhabak, K. P.; Mugesh, G. Synthesis and Structure–Activity Correlation Studies of Secondary‐and Tertiary‐Amine‐Based Glutathione Peroxidase Mimics. Chem. Eur. J. 2009, 15, 9846–9854. DOI: . (g) Sarma, B. K.; Manna, D.; Minoura, M.; Mugesh, G. Synthesis, Structure, Spirocyclization Mechanism, and Glutathione Peroxidase-like Antioxidant Activity of Stable Spirodiazaselenurane and Spirodiazatellurane. J. Am. Chem. Soc. 2010, 132, 5364–5374. DOI: . (h) Bhabak, K. P.; Mugesh, G. Functional Mimics of Glutathione Peroxidase: Bioinspired Synthetic Antioxidants. Acc. Chem. Res. 2010, 43, 1408–1419. DOI: https://doi.org/10.1021/ar100059g. (i) Koketsu, M.; Ishihara, H.; Wu, W.; Murakami, K.; Saiki, I. 3-Selenazine Derivatives Induce Cytotoxicity and DNA Fragmentation in Human HT-1080 Fibrosarcoma Cells. Eur. J. Pharm. Sci. 1999, 9, 157–161. DOI: https://doi.org/10.1016/S0928-0987(99)00058-5. (i) Takahashi, H.; Nishina, A.; Fukumoto, R.-h.; Kimura, H.; Koketsu, M.; Ishihara, H. Selenocarbamates are Effective Superoxide Anion Scavengers In Vitro.Eur. J. Pharm. Sci. 2005, 24, 291–295. DOI: https://doi.org/10.1016/j.ejps.2004.11.004. (j) van der Goot, H.; Eriks, J. C.; Leurs, R.; Timmerman, H. Amselamine, a New Selective Histamine H2-Receptor Agonist. Bioorg. Med. Chem. Lett. 1994, 4, 1913−1916. DOI: https://doi.org/10.1016/S0960-894X(01)80533-3. (k) Sekiguchi, A.; Nishina, A.; Kimura, H.; Fukumoto, R. H.; Kanoh, K.; Ishihara, H.; Koketsu, M. Superoxide Anion-Scavenging Effect of 2-Amino-1, 3-selenazoles. Chem. Pharm. Bull. 2005, 53, 1439–1442. DOI: https://doi.org/10.1248/cpb.53.1439. (l) Choi, I.-H.; Jalani, H. B.; Jeong, J.-H. Synthesis of Selenopyrano [2, 3-c] pyrazol-4 (1H)-ones and their C–H Activation. Synlett. 2021, 32, 321–325. DOI: https://doi.org/10.1055/a-1296-8835. (m) Kroulík, J.; Čejka, J.; Böhm, S.; Šebek, P.; Nešpůrek, S.; Koshets, I.; Sedmera, P.; Halada, P.; Havlíček, V.; Kratochvíl, B.; Kuthan, J. Substituted 2, 4, 4, 6-Tetraphenyl-4 H-selenopyrans: Preparation, Photocolouration and 4 H-selenopyran Ring Geometry; an X-ray and DFT Calculation Study. J. Chem. Soc., Perkin Trans. 2, 2002, 1909–1916. DOI: https://doi.org/10.1039/B204976G. (n) Kravchenko, U.; Borjaev, G.; Nevitov, M.; Ostapchuk, A.; Kistanova, E. The Role of the Antioxidant: Selenopyran in the Stability of the Antioxidant System to Toxic Effect of Cadmium Chloride. Biotechnol. Anim. Husb. 2007, 23, 181–191. DOI: https://doi.org/10.2298/BAH0701181K.
  • Tanini, D.; Lupori, B.; Malevolti, G.; Ambrosi, M.; Nostro, P. L.; Capperucci, A. Direct Biocatalysed Synthesis of First Sulfur-, Selenium- and Tellurium- Containing l-Ascorbyl hybrid Derivatives with Radical Trapping and GPx-Like Properties. Chem. Commun. (Camb.). 2019, 55, 5705–10076. DOI:
  • (a) Karabanovich, G.; Roh, J.; Padělková, Z.; Novák, Z.; Vávrová, K.; Hrabálek, A. Synthesis of Selenazoles by In Situ Cycloisomerization of Propargyl Selenoamides Using Oxygen-Selenium Exchange Reaction. J. Org. Chem. 2014, 79, 1856–8808. DOI: https://doi.org/10.1016/j.tet.2013.07.103. (b) Pizzo, C.; Mahler, S. G. Synthesis of Selenazoles by In Situ Cycloisomerization of Propargyl Selenoamides Using Oxygen–Selenium Exchange Reaction. J. Org. Chem. 2014, 79, 1856–1860. (c) Choi, Y.-S.; Kim, D.-M.; Kim, Y.- J.; Yang, S.; Lee, K.-T.; Ryu, J.-H.; Jeong, J.-H. Synthesis and Evaluation of Neuroprotective Selenoflavanones. Int. J. Mol. Sci. 2015, 16, 29574–29582. DOI: . (d) Yang, W.-R.; Choi, Y.-S.; Jeong, J.-H. Efficient Synthesis of Polymethoxyselenoflavones via Regioselective Direct C–H Arylation of Selenochromones. Org. Biomol. Chem. 2017, 15, 3074–3083. DOI: . (e) Yavari, I.; Mosaferi, Sh. A One-Pot Synthesis of 2H-pyrido[1,2-a][1,3,5]triazine-2-selenones from Acyl Isoselenocyanates and Pyridin-2-amine. Monatsh. Chem. 2017, 148, 963–966. DOI: . (f) Yavari, I.; Mosaferi, Sh. Synthesis of 1, 3, 5‐Triazepineselone Derivatives from Acyl Isoselenocyanates and Benzene‐1, 2‐diamine. Helv. Chim. Acta. 2016, 99, 130–132. DOI: .
  • Xue, D.; Li, J.; Zhang, Z. T.; Deng, J. G. Efficient Method for the Synthesis of Polysubstituted Benzenes by One-Pot Tandem Reaction of Vinyl Malononitriles with Nitroolefins. J. Org. Chem. 2007, 72, 5443–5445. DOI: https://doi.org/10.1021/jo070766i.
  • Esmaeili, A. A.; Moradi, A.; Khoddam Mohammadi, H. Regioselective Synthesis of Highly-Substituted Biaryls by Reaction of Vinyl Malononitriles with Acetylenic Esters. Tetrahedron. 2010, 66, 3575–3578. DOI: https://doi.org/10.1016/j.tet.2010.03.052.
  • Kiruthika, S. E.; Perumal, P. T.; Balachandran, C.; Ignacimuthu, S. An Easy Protocol for the Domino Synthesis of Diversely Functionalized Spirocarbocycles and Their Biological Evaluation. J. Chem. Sci. 2014, 126, 177–185. DOI: https://doi.org/10.1007/s12039-013-0560-1.
  • Attanasi, O. A.; Favi, G.; Geronikaki, A.; Mantellini, F.; Moscatelli, G.; Paparisva, A. Synthesis of Densely Functionalized 3a,4-Dihydro-1H-Pyrrolo[1,2-b]Pyrazoles via Base Mediated Domino Reaction of Vinyl Malononitriles with 1,2-Diaza-1,3-Dienes. Org. Lett. 2013, 15, 2624–2627. DOI: https://doi.org/10.1021/ol401336s.
  • Barnes, D. M.; Haight, A. R.; Hameury, T.; McLaughlin, M. A.; Mei, J.; Tedrow, J. S.; Toma, J. D. R. New Conditions for the Synthesis of Thiophenes via the Knoevenagel/Gewald Reaction Sequence. Application to the Synthesis of a Multitargeted Kinase Inhibitor. Tetrahedron. 2006, 62, 11311–11319. DOI: https://doi.org/10.1016/j.tet.2006.07.008.
  • Babu, T. H.; Karthik, K.; Perumal, P. T. A Facile, One-Pot Synthesis of Functionalized Spiro-Oxindoles via Vinylogous Aldol Reaction of Vinyl Malononitriles with Isatin Derivatives in Aqueous Media. Synlett. 2010, 2010, 1128–1132. DOI: https://doi.org/10.1055/s-0029-1219588.
  • Babu, T. H.; Joseph, A. A.; Muralidharan, D.; Perumal, P. T. A Novel Method for the Synthesis of Functionalized Spirocyclic Oxindoles by One-Pot Tandem Reaction of Vinyl Malononitriles with Isatylidene Malononitriles. Tetrahedron Lett. 2010, 51, 994–996. DOI: https://doi.org/10.1016/j.tetlet.2009.12.082.
  • Wang, X.-W.; Li, P.; Xiao, H.; Zhu, S.-Z.; Zhao, G. A Simple Method for Synthesis of 5-CF3 Substituted Dienamides via Rearrangement of 2H-Pyran Derivatives. Tetrahedron. 2011, 67, 7618–7621. DOI: https://doi.org/10.1016/j.tet.2011.07.007.
  • Elinson, M. N.; Ilovaisky, A. I.; Merkulova, V. M.; Barba, F.; Batanero, B. General Approach to Spiroacenaphthylene Pentacyclic Systems: Direct Multicomponent Assembling of Acenaphthenequinone and Cyclic Carbonyl Compounds with Two Molecules of Malononitrile. Tetrahedron. 2013, 69, 7125–7130. DOI: https://doi.org/10.1016/j.tet.2013.06.015.
  • Alizadeh, A.; Sedighian, H.; Bayat, F. A Convenient Approach to the Synthesis of Novel Substituted Cyclohexadienes by the Vinylogous Michael Addition of α,α-Dicyanoolefins. Synlett. 2013, 25, 389–392. DOI: https://doi.org/10.1055/s-0033-1340345.
  • Alizadeh, A.; Sedighian, H.; Ghanbaripour, R. An Approach to the Synthesis of 7-Amino-6-Imino-9-Phenyl-6 H -Benzo[c]Chromene-8-Carbonitrile Derivatives via a Three-Component Reaction under Ultrasonic Irradiation. HCA. 2014, 97, 447–452. DOI: https://doi.org/10.1002/hlca.201300374.
  • (a) Banerjee, B. Recent Developments on Ultrasound-Assisted Synthesis of Bioactive N-heterocycles at Ambient Temperature. Aust. J. Chem. 2017, 70, 872–888. DOI: . (b) Banerjee, B. Recent Developments on Ultrasound-Assisted One-Pot Multicomponent Synthesis of Biologically Relevant Heterocycles. Ultrason. Sonochem. 2017, 35, 15–35. DOI: . (c) Banerjee, B. Recent Developments on Ultrasound Assisted Catalyst-Free Organic Synthesis. Ultrason. Sonochem. 2016, 35, 1–14. DOI: . (d) Banerjee, B. Recent Developments on Ultrasound-Assisted Organic Synthesis in Aqueous Medium. J. Serb. Chem. Soc. 2017, 82, 755–790. DOI: . (e) Banerjee, B. Ultrasound and Nano‐Catalysts: An Ideal and Sustainable Combination to Carry out Diverse Organic Transformations. ChemistrySelect. 2019, 4, 2484–2500. . (f) Kaur, G.; Sharma, A.; Banerjee, B. Auxiliary Part of Ligand Mediated Unique Coordination Chemistry of Copper (II). ChemistrySelect. 2018, 3, 5283–5295. DOI: . (g) Khaligh, N. G. Ultrasound-Assisted One-Pot Synthesis of Substituted Coumarins Catalyzed by Poly(4-vinylpyridinium) Hydrogen Sulfate as an Efficient and Reusable Solid Acid Catalyst. Ultrason. Sonochem. 2013, 20, 1062–1068. DOI: . (h) Mosaddegh, E. Ultrasonic-Assisted Preparation of Nano Eggshell Powder: A Novel Catalyst in Green and High Efficient Synthesis of 2-Aminochromenes. Ultrason. Sonochem. 2013, 20, 1436–1441. DOI: .
  • Douglas, I. B. Acylselenoureas. J. Am. Chem. Soc. 1937, 59, 740–742. DOI: https://doi.org/10.1021/ja01283a041.
  • (a) Xue, D.; Chen, Y. C.; Cun, L. F.; Wang, Q. W.; Zhu, J.; Deng, J. G. Asymmetric Direct Vinylogous Michael Reaction of Activated Alkenes to Nitroolefins Catalyzed by Modified Cinchona Alkaloids. Org. Lett. 2005, 7, 5293–5296. DOI: https://doi.org/10.1021/ol052283b. (b) Poulsen, T. B.; Bell, M.; Jorgensen, K. A. Organocatalyticenantioselective Vinylogous Aldol Reaction of Allyl Aryl Ketones to Activated Acyclic Ketones. Org. Biomol. Chem. 2006, 4, 63–70. DOI: https://doi.org/10.1039/B514564C. (c) Heemstra, J. R.; Beutner, G. L. Catalytic, Enantioselective, Vinylogous Aldol Reactions. Angew. Chem., Int. Ed. 2005, 44, 4682–4695. DOI: https://doi.org/10.1002/anie.200462338.
  • (a) Esmaeili, A. A.; Hosseinabadi, R.; Razi, M. Ionic Liquid Promoted Efficient Three-Component Synthesis of 2-Thioxo-2H-Thiopyrans. Phosphorus, Sulfur, Silicon Relat. Elem. 2011, 186, 2267–2273. DOI: https://doi.org/10.1080/10426507.2011.601776. (b) Sun, C.; Chang, W.; Kulkarni, M. Regioselective One-Pot Three Component Synthesis of Chiral 2-Iminoselenazolines under Sonication. RSC Adv. 2015, 5, 97113–97120. DOI: https://doi.org/10.1039/C5RA18763J. (c) Heimgartner, H.; Zhou, Y.; Atanassov, P. K.; Sommen, G. L. Isoselenocyanates as Building Blocks for Selenium-Containing Heterocycles. Phosphorus Sulfur Silicon Relat. Elem. 2008, 183, 840–855. DOI: https://doi.org/10.1080/10426500801898135. (d) Atanassov, P. K.; Linden, A.; Heimgartner, H. Synthesis of 3-Acetyl-n-aryl-4-diethylaminoselenet-2 (2H)-Imines from 4-Diethylamino-3-butyn-2-one and Aryl Isoselenocyanates. Heterocycles. 2004, 62, 521–533. DOI: https://doi.org/10.3987/COM-03-S(P)46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.