149
Views
1
CrossRef citations to date
0
Altmetric
Articles

Photodynamic antimicrobial activity of magnesium(II) porphyrazine with bulky peripheral sulfanyl substituents

, , , , , , & ORCID Icon show all
Pages 705-710 | Received 21 Sep 2021, Accepted 28 Nov 2021, Published online: 14 Dec 2021

References

  • Nesi-Reis, V.; Lera-Nonose, D. S. S. L.; Oyama, J.; Silva-Lalucci, M. P. P.; Demarchi, I. G.; Aristides, S. M. A.; Teixeira, J. J. V.; Silveira, T. G. V.; Lonardoni, M. V. C. Contribution of Photodynamic Therapy in Wound Healing: A Systematic Review. Photodiagnosis Photodyn. Ther. 2018, 21, 294–305. DOI: 10.1016/j.pdpdt.2017.12.015.
  • Sen, C. K.; Gordillo, G. M.; Roy, S.; Kirsner, R.; Lambert, L.; Hunt, T. K.; Gottrup, F.; Gurtner, G. C.; Longaker, M. T. Human Skin Wounds: A Major and Snowballing Threat to Public Health and the Economy. Wound Repair Regen. 2009, 17, 763–771. DOI: 10.1111/j.1524-475X.2009.00543.x.
  • Filius, P. M.; Gyssens, I. C. Impact of Increasing Antimicrobial Resistance on Wound Management. Am. J. Clin. Dermatol. 2002, 3, 1–7. DOI: 10.2165/00128071-200203010-00001.
  • Sieńko, A.; Czaban, S.; Ojdana, D.; Majewski, P.; Wieczorek, A.; Sacha, P.; Tryniszewska, E. A.; Wieczorek, P. Comparison of Antibiotic Resistance and Virulence in Vancomycin-Susceptible and Vancomycin-Resistant Enterococcus faecium Strains. J. Med. Sci. 2019, 87, 195–203. DOI: 10.20883/jms.288.
  • Cieplik, F.; Deng, D.; Crielaard, W.; Buchalla, W.; Hellwig, E.; Al-Ahmad, A.; Maisch, T. Antimicrobial Photodynamic Therapy - What We Know and What We Don’t. Crit. Rev. Microbiol. 2018, 44, 571–589. DOI: 10.1080/1040841X.2018.1467876.
  • Laxminarayan, R.; Matsoso, P.; Pant, S.; Brower, C.; Røttingen, J. A.; Klugman, K.; Davies, S. Access to Effective Antimicrobials: A Worldwide Challenge. Lancet 2016, 387, 168–175. DOI: 10.1016/S0140-6736(15)00474-2.
  • Renwick, M. J.; Simpkin, V.; Mossialos, E. World Health Organization, Regional Office for Europe, and European Observatory on Health Systems and Policies. Targeting Innovation in Antibiotic Drug Discovery and Development: The Need for a One Health - One Europe - One world Framework [Internet]. 2016. [cited 2020 Aug. 28]. http://www.ncbi.nlm.nih.gov/books/NBK447337/
  • Wainwright, M.; Maisch, T.; Nonell, S.; Plaetzer, K.; Almeida, A.; Tegos, G. P.; Hamblin, M. R. Photoantimicrobials - Are We Afraid of the Light? Lancet Infect. Dis. 2017, 17, e49–e55. DOI: 10.1016/S1473-3099(16)30268-7.
  • Wainwright, M. Dyes, Flies, and Sunny Skies: Photodynamic Therapy and Neglected Tropical Diseases. Coloration Technol. 2017, 133, 3–14. DOI: 10.1111/cote.12259.
  • Abrahamse, H.; Hamblin, M. R. New Photosensitizers for Photodynamic Therapy. Biochem. J. 2016, 473, 347–364. DOI: 10.1042/BJ20150942.
  • Carrera, E. T.; Dias, H. B.; Corbi, S. C. T.; Marcantonio, R. A. C.; Bernardi, A. C. A.; Bagnato, V. S.; Hamblin, M. R.; Rastelli, A. N. S. The Application of Antimicrobial Photodynamic Therapy (aPDT) in Dentistry: A Critical Review. Laser Phys. 2016, 26, 123001. DOI: 10.1088/1054-660X/26/12/123001.
  • Akın, M.; Şaki, N.; Güzel, E.; Orman, B.; Nalbantsoy, A.; Koçak, M. B. Assessment of in Vitro Cytotoxic, iNOS, Antioxidant and Photodynamic Antimicrobial Activities of Water-Soluble Sulfonated Phthalocyanines. Photochem. Photobiol 2021, 97, 13558. DOI: 10.1111/php.13558.
  • Triesscheijn, M.; Ruevekamp, M.; Antonini, N.; Neering, H.; Stewart, F. A.; Baas, P. Optimizing Meso-tetra-hydroxyphenyl-chlorin-mediated Photodynamic Therapy for Basal Cell Carcinoma. Photochem. Photobiol. 2006, 82, 1686–1690. DOI: 10.1562/2006-07-11-RA-966.
  • Kiesslich, T.; Berlanda, J.; Plaetzer, K.; Krammer, B.; Berr, F. Comparative Characterization of the Efficiency and Cellular Pharmacokinetics of Foscan- and Foslip-based Photodynamic Treatment in Human Biliary Tract Cancer Cell Lines. Photochem. Photobiol. Sci. 2007, 6, 619–627. DOI: 10.1039/B617659C.
  • Calixto, G.; Bernegossi, J.; de Freitas, L.; Fontana, C.; Chorilli, M. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review. Molecules 2016, 21, 342. DOI: 10.3390/molecules21030342.
  • Wachowska, M.; Muchowicz, A.; Firczuk, M.; Gabrysiak, M.; Winiarska, M.; Wańczyk, M.; Bojarczuk, K.; Golab, J. Aminolevulinic Acid (ALA) as a Prodrug in Photodynamic Therapy of Cancer. Molecules 2011, 16, 4140–4164. DOI: 10.3390/molecules16054140.
  • Hu, W. P.; Wang, J. J.; Yu, C. L.; Lan, C. C. E.; Chen, G. S.; Yu, H. S. Helium-neon Laser Irradiation Stimulates Cell Proliferation Through Photostimulatory Effects in Mitochondria. J. Invest. Dermatol. 2007, 127, 2048–2057. DOI: 10.1038/sj.jid.5700826.
  • Primo, F. L.; Rodrigues, M. M. A.; Simioni, A. R.; Bentley, M. V. L. B.; Morais, P. C.; Tedesco, A. C. In Vitro Studies of Cutaneous Retention of Magnetic Nanoemulsion Loaded with Zinc Phthalocyanine for Synergic Use in Skin Cancer Treatment. J. Magn. Magn. Mater 2008, 320, e211–e214. DOI: 0.1016/j.jmmm.2008.02.050. DOI: 10.1016/j.jmmm.2008.02.050.
  • Henderson, B. W.; Busch, T. M.; Snyder, J. W. Fluence Rate as a Modulator of PDT Mechanisms. Lasers Surg. Med. 2006, 38, 489–493. DOI: 10.1002/lsm.20327.
  • Garcia, V. G.; de Lima, M. A.; Okamoto, T.; Milanezi, L. A.; Júnior, E. C. G.; Fernandes, L. A.; de Almeida, J. M.; Theodoro, L. H. Effect of Photodynamic Therapy on the Healing of Cutaneous Third-Degree-Burn: Histological Study in Rats. Lasers Med. Sci. 2010, 25, 221–228. DOI: 10.1007/s10103-009-0694-z.
  • Lyapina, E. A.; Machneva, T. V.; Larkina, E. A.; Tkachevskaya, E. P.; Osipov, A. N.; Mironov, A. F. Effect of Photosensitizers Pheophorbide a and Protoporphyrin IX on Skin Wound Healing upon Low-Intensity Laser Irradiation. Biophysics 2010, 55, 296–300. DOI: 10.1134/S0006350910020223.
  • Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic Therapy of Cancer: An Update. CA Cancer J. Clin. 2011, 61, 250–281. DOI: 10.3322/caac.20114.
  • Mazor, O.; Brandis, A.; Plaks, V.; Neumark, E.; Rosenbach-Belkin, V.; Salomon, Y.; Scherz, A. WST11, a Novel Water-Soluble Bacteriochlorophyll Derivative; Cellular Uptake, Pharmacokinetics, Biodistribution, and Vascular Targeted Photodynamic Activity against Melanoma Tumors. Photochem. Photobiol. 2004, 81, 342–351. DOI: 10.1562/2004-06-14-RA-199.
  • Gierszewski, M.; Falkowski, M.; Sobotta, L.; Stolarska, M.; Popenda, L.; Lijewski, S.; Wicher, B.; Burdzinski, G.; Karolczak, J.; Jurga, S.; et al. Porphyrazines with Peripheral Isophthaloxyalkylsulfanyl Substituents and Their Optical Properties. J. Photochem. Photobiol. A Chem. 2015, 307–308, 54–67. DOI: 10.1016/j.jphotochem.2015.04.003.
  • Seotsanyana-Mokhosi, I.; Kuznetsova, N.; Nyokong, T. Photochemical Studies of Tetra-2,3-Pyridinoporphyrazines. J. Photochem. Photobiol. A Chem. 2001, 140, 215–222. DOI: 10.1016/S1010-6030(01)00427-0.
  • Sobotta, L.; Sniechowska, J.; Ziental, D.; Dlugaszewska, J.; Potrzebowski, M. J. Chlorins with (Trifluoromethyl)Phenyl Substituents – Synthesis, Lipid Formulation and Photodynamic Activity against Bacteria. Dyes Pigm. 2019, 160, 292–300. DOI: 10.1016/j.dyepig.2018.08.004.
  • Sobotta, L.; Dlugaszewska, J.; Kasprzycki, P.; Lijewski, S.; Teubert, A.; Mielcarek, J.; Gdaniec, M.; Goslinski, T.; Fita, P.; Tykarska, E. In Vitro Photodynamic Activity of Lipid Vesicles with Zinc Phthalocyanine Derivative against Enterococcus faecalis. J. Photochem. Photobiol. B. 2018, 183, 111–118. DOI: 10.1016/j.jphotobiol.2018.04.025.
  • Sobotta, L.; Dlugaszewska, J.; Gierszewski, M.; Tillo, A.; Sikorski, M.; Tykarska, E.; Mielcarek, J.; Goslinski, T. Photodynamic Inactivation of Enterococcus faecalis by Non-Peripherally Substituted Magnesium Phthalocyanines Entrapped in Lipid Vesicles. J. Photochem. Photobiol. B. 2018, 188, 100–106. DOI: 10.1016/j.jphotobiol.2018.09.003.
  • Sobotta, L.; Ziental, D.; Sniechowska, J.; Dlugaszewska, J.; Potrzebowski, M. J. Lipid Vesicle-Loaded Meso-Substituted Chlorins of High in Vitro Antimicrobial Photodynamic Activity. Photochem. Photobiol. Sci. 2019, 18, 213–223. DOI: 10.1039/C8PP00258D.
  • Sibert, J. W.; Baumann, T. F.; Williams, D. J.; White, A. J.; Barrett, A. G. M.; Hoffman, B. M. gemini-Porphyrazines: The Synthesis and Characterization of Metal-Capped Cis-and Trans-Porphyrazine Tetrathiolates. J. Am. Chem. Soc. 1996, 118, 10487–10493. DOI: 10.1021/ja961912x.
  • Kandaz, M.; Özkaya, A. R.; Koca, A.; Salih, B. Water and Alcohol-Soluble Octakis-Metalloporphyrazines Bearing Sulfanyl Polyetherol Substituents: Synthesis, Spectroscopy and Electrochemistry. Dyes Pigm. 2007, 74, 483–489. DOI: 10.1016/j.dyepig.2006.03.014.
  • Sobotta, L.; Dlugaszewska, J.; Ziental, D.; Szczolko, W.; Koczorowski, T.; Goslinski, T.; Mielcarek, J. Optical Properties of a Series of Pyrrolyl-Substituted Porphyrazines and Their Photoinactivation Potential against Enterococcus faecalis after Incorporation into Liposomes. J. Photochem. Photobiol. A Chem. 2019, 368, 104–109. DOI: 10.1016/j.jphotochem.2018.09.015.
  • Mlynarczyk, D.; Lijewski, S.; Falkowski, M.; Piskorz, J.; Szczolko, W.; Sobotta, L.; Stolarska, M.; Popenda, L.; Jurga, S.; Konopka, K.; et al. Dendrimeric Sulfanyl Porphyrazines: Synthesis, Physico-Chemical Characterization, and Biological Activity for Potential Applications in Photodynamic Therapy. Chempluschem 2016, 81, 460–470. DOI: 10.1002/cplu.201600051.
  • Piskorz, J.; Lijewski, S.; Gierszewski, M.; Gorniak, K.; Sobotta, L.; Wicher, B.; Tykarska, E.; Düzgüneş, N.; Konopka, K.; Sikorski, M.; et al. Sulfanyl Porphyrazines: Molecular Barrel-like Self-Assembly in Crystals, Optical Properties and in Vitro Photodynamic Activity towards Cancer Cells. Dyes Pigm. 2016, 136, 898–908. [cited 2016 Oct 3]; DOI: 10.1016/j.dyepig.2016.09.054.
  • Piskorz, J.; Skupin, P.; Lijewski, S.; Korpusinski, M.; Sciepura, M.; Konopka, K.; Sobiak, S.; Goslinski, T.; Mielcarek, J. Synthesis, Physical–Chemical Properties and in Vitro Photodynamic Activity against Oral Cancer Cells of Novel Porphyrazines Possessing Fluoroalkylthio and Dietherthio Substituents. J. Fluorine Chem. 2012, 135, 265–271. DOI: 10.1016/j.jfluchem.2011.12.003.
  • Tasso, T. T.; Schlothauer, J. C.; Junqueira, H. C.; Matias, T. A.; Araki, K.; Liandra-Salvador, É.; Antonio, F. C. T.; Homem-de-Mello, P.; Baptista, M. S. Photobleaching Efficiency Parallels the Enhancement of Membrane Damage for Porphyrazine Photosensitizers. J. Am. Chem. Soc. 2019, 141, 15547–15556. DOI: 10.1021/jacs.9b05991.
  • Sobotta, L.; Wierzchowski, M.; Mierzwicki, M.; Gdaniec, Z.; Mielcarek, J.; Persoons, L.; Goslinski, T.; Balzarini, J. Photochemical Studies and Nanomolar Photodynamic Activities of Phthalocyanines Functionalized with 1,4,7-Trioxanonyl Moieties at Their Non-Peripheral Positions. J. Inorg. Biochem. 2016, 155, 76–81. DOI: 10.1016/j.jinorgbio.2015.11.006.
  • Nyokong, T.; Ahsen, V. (eds.). Photosensitizers in Medicine, Environment, and Security; Springer: Dordrecht: New York, NY, 2012.
  • Jori, G.; Fabris, C.; Soncin, M.; Ferro, S.; Coppellotti, O.; Dei, D.; Fantetti, L.; Chiti, G.; Roncucci, G. Photodynamic Therapy in the Treatment of Microbial Infections: Basic Principles and Perspective Applications. Lasers Surg. Med. 2006, 38, 468–481. DOI: 10.1002/lsm.20361.
  • Karrer, S.; Szeimies, R. M.; Ernst, S.; Abels, C.; Bäumler, W.; Landthaler, M. Photodynamic Inactivation of Staphylococci with 5-Aminolaevulinic Acid or Photofrin. Lasers Med. Sci. 1999, 14, 54–61. DOI: 10.1007/s101030050021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.