625
Views
2
CrossRef citations to date
0
Altmetric
Review

Recent progress in the synthesis of phosphoramidate and phosphonamide derivatives: A review

& ORCID Icon
Pages 711-731 | Received 18 Oct 2021, Accepted 27 Nov 2021, Published online: 09 Dec 2021

References

  • Shajari, N.; Ramazani, A. Synthesis of Heterocyclic Pentavalent Phosphorus Compounds from Phosphite Derivatives and Indane-1,2,3-Trione. Phosphorus Sulfur Silicon Relat. Elem. 2010, 185, 1850–1857. DOI: 10.1080/10426500903329260.
  • Taran, T.; Ramazani, A.; Aghahosseini, H.; Gouranlou, F.; Tarasi, R.; Khoobi, M.; Joo, S. W. One-Pot Three-Component Syntheses of α-Aminophosphonates from a Primary Amine, Quinoline-4-Carbaldehyde and a Phosphite in the Presence of MCM-41@PEI as an Efficient Nanocatalyst. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 776–781. DOI: 10.1080/10426507.2017.1290631.
  • Aghahosseini, H.; Ramazani, A.; Taran, J.; Ślepokura, K.; Lis, T. Heteroaromatic Aldehydes with Unprecedented Catalytic Performance in Selective Radical Reactions: Synthesis of α-Aminophosphonate Scaffolds. Asian J. Org. Chem. 2019, 8, 1519–1527. DOI: 10.1002/ajoc.201900241.
  • Yavari, I.; Ramazani, A. An Efficient One-Pot Synthesis of Dialkyl 3H-Naphtho[2,1:b]Pyran-2,3-Dicarboxylates Mediated by Vinyl Triphenylphosphonium Salt. Synth. Commun. 1997, 27, 1385–1390. DOI: 10.1080/00397919708006068.
  • Ramazani, A.; Rahimifard, M.; Souldozi, A. Silica-Gel Catalyzed Stereoselective Conversion of Stabilized Phosphorus Ylides to Dialkyl (Z) -2-(2-Methoxycarbonyl-Phenoxy)-2-Butenedioates in Solvent-Free Conditions. Phosphorus Sulfur Silicon Relat. Elem. 2007, 182, 1–5. DOI: 10.1080/10426500600961571.
  • Ramazani, A.; Souldozi, A. The Reaction of (N-Isocyanimino)Triphenylphosphorane with Anthranilic Acid Derivatives: One-Pot Synthesis of 2-Substituted 1,3,4-Oxadiazoles via Intramolecular Aza-Wittig Reaction. Phosphorus Sulfur Silicon Relat. Elem. 2009, 184, 2344–2350. DOI: 10.1080/10426500802466684.
  • Souldozi, A.; Ślepokura, K.; Lis, T.; Ramazani, A. Synthesis and Single Crystal X-Ray Structure of 2-(1, 3, 4-Oxadiazol-2-yl) Aniline. Z. Naturforsch. 2007, 62, 835–840. DOI: 10.1515/znb-2007-0613.
  • Ramazani, A.; Kazemizadeh, A. R.; Ahmadi, E.; Noshiranzadeh, N.; Souldozi, A. Synthesis and Reactions of Stabilized Phosphorus Ylides. Curr. Organ. Chem. 2008, 12, 59–82. DOI: 10.2174/138527208783330055.
  • Yavari, I.; Ramazani, A. One-Pot Stereoselective Synthesis of Dimethyl (2-Hydroxy-4,4-Dimethylcy Clohex-l-en-6-One-l-yl)-3-(Diphenylphosphonate)Butanedioate. Phosphorus Sulfur Silicon Relat. Elem. 1997, 130, 73–77. DOI: 10.1080/10426509708033699.
  • Bouchareb, F.; Berredjem, M.; Bouzina, A.; Guerfi, M. Ultrasound Promoted, Rapid and Green Synthesis of Phosphonamide Derivatives under Catalyst and Solvent-Free Conditions. Phosphorus Sulfur Silicon Relat. Elem. 2021, 196, 1–9. DOI: 10.1080/10426507.2020.1854254.
  • Darnotuk, E. S.; Siniavin, A. E.; Shulga, N. V.; Karamov, E. V.; Shastina, N. S. Phosphoramidate Conjugates of 3′-Azido-3′-Deoxythymidine Glycerolipid Derivatives and Amino Acid Esters: Synthesis and Anti-HIV Activity. Med. Chem. Res. 2021, 30, 664–671. DOI: 10.1007/s00044-020-02672-8.
  • Shastina, N. S.; Maltseva, T. Y.; D’yakova, L. N.; Lobach, O. A.; Chataeva, M. S.; Nosik, D. N.; Shvetz, V. I. Synthesis, Properties, and anti-HIV Activity of New Lipophilic 3′-Azido-3′-Deoxythymidine Conjugates Containing Functional Phosphoric Linkages. Russ. J. Bioorg. Chem. 2013, 39, 161–169. DOI: 10.1134/S1068162013020118.
  • Zhao, B.; Liu, Y. T.; Zhang, C. Y.; Liu, D. Y.; Li, F.; Liu, Y. Q. A Novel Phosphoramidate and Its Application on Cotton Fabrics: Synthesis, Flammability and Thermal Degradation. J. Anal. Appl. Pyrolysis 2017, 125, 109–116. DOI: 10.1016/j.jaap.2017.04.011.
  • Breuer, E.; Acylphosphonates and Their Derivatives. In The Chemistry of Organophosphorus Compounds.; Heartly, F. R. Ed.; John Wiley and Sons, New York, 1996, Vol 4, pp 653–729.
  • Prakasha, T. K.; Day, O. R.; Holmes, R. R. Pentacoordinated Molecules. 101. New Class of Bicyclic Oxyphosphoranes with an Oxaphosphorinane Ring: Molecular Structures and Activation Energies for Ligand Exchange. J. Am. Chem. Soc. 1994, 116, 8095–8104. DOI: 10.1021/ja00097a016.
  • Nayab Rasool, S. K.; Subramanyam, C.; Janakiramudu, D. B.; Supraja, P.; Usha, R.; Naga Raju, C. Convenient One-Pot Synthesis and Biological Evaluation of Phosphoramidates and Phosphonates Containing Heterocycles. Phosphorus Sulfur Silicon Relat. Elem. 2018, 193, 470–474. DOI: 10.1080/10426507.2018.1452229.
  • Fabrício, M. O. The Diverse Pharmacology and Medicinal Chemistry of Phosphoramidates-A Review. RSC Adv. 2014, 4, 18998–19012. DOI: 10.1039/C4RA01454E.
  • Westheimer, F. Why Nature Chose Phosphates. Science 1987, 235, 1173–1178. DOI: 10.1126/science.2434996.
  • (a) Congiatu, C.; McGuigan, C.; Jiang, W. G.; Davies, G.; Mason, M. D. Naphthyl Phosphoramidate Derivatives of BVdU as Potential Anticancer Agents: Design, Synthesis and Biological Evaluation. Nucleosides Nucleotides Nucleic Acids. 2005, 24, 485–489. DOI: 10.1081/ncn-200061774. (b) McGuigan, C.; Cahard, D.; Sheeka, H. M.; De Clercq, E.; Balzarini, J. Aryl Phosphoramidate Derivatives of d4T Have Improved anti-HIV Efficacy in Tissue Culture and May Act by the Generation of a Novel Intracellular Metabolite. J. Med. Chem. 1996, 39, 1748–1753. DOI: 10.1021/jm950605j. (c) McGuigan, C.; Harris, S. A.; Daluge, S. M.; Gudmundsson, K. S.; McLean, E. W.; Burnette, T. C.; Marr, H.; Hazen, R.; Condreay, L. D.; Johnson, L.; et al. Application of Phosphoramidate Pronucleotide Technology to Abacavir Leads to a Significant Enhancement of Antiviral Potency. J. Med. Chem. 2005, 48, 3504–3515. DOI: 10.1021/jm0491400. (d) Perrone, P.; Luoni, G. M.; Kelleher, M. R.; Daverio, F.; Angell, A.; Mulready, S.; Congiatu, C.; Rajyaguru, S.; Martin, J. A.; Le Pogam, S.; et al. Application of the Phosphoramidate ProTide Approach to 40-Azidouridine Confers Sub-Micromolar Potency Versus Hepatitis C Virus on an Inactive Nucleoside. J. Med. Chem. 2007, 50, 1840–1849. DOI: 10.1021/jm0613370.
  • Dirven, H. A. A. M.; Van Ommen, B.; Van Bladeren, P. Glutathione Conjugation of Alkylating Cytostatic Drugs with a Nitrogen Mustard Group and the Role of Glutathione S-Transferases. Chem. Res. Toxicol. 1996, 9, 351–360. DOI: 10.1021/tx950143c.
  • Niculescu-Duvaz, I.; Spooner, R.; Marais, R.; Springer, C. J. Gene-Directed Enzyme Prodrug Therapy. Bioconjug. Chem. 1998, 9, 4–22. DOI: 10.1021/bc970116t.
  • Adams, L. A.; Cox, R. J.; Gibson, J. S.; Mayo-Martin, M. B.; Walter, M.; Whittingham, W. A New Synthesis of Phosphoramidates: Inhibitors of the Key Bacterial Enzyme Aspartate Semi-Aldehyde Dehydrogenase. Chem. Commun. 2002, 18, 2004–2005. DOI: 10.1039/B206199F.
  • Neely, W. B.; Whitney, W. K. Statistical Analysis of Insectiscidal Activity in a Series of Phosphoramidates. J. Agric. Food Chem. 1968, 16, 571–573. DOI: 10.1021/jf60158a014.
  • Mara, C.; Dempsey, E.; Bell, A.; Barlow, J. W. Synthesis and Evaluation of Phosphoramidate and Phosphorothioamidate Analogues of Amiprophos Methyl as Potential Antimalarial Agents. Bioorg. Med. Chem. Lett. 2011, 21, 6180–6183. DOI: 10.1016/j.bmcl.2011.07.088.
  • Keough, D. T.; Špaček, P.; Hocková, D.; Tichý, T.; Vrbková, S.; Slavětínská, L.; Janeba, Z.; Naesens, L.; Edstein, M. D.; Chavchich, M.; et al. Acyclic Nucleoside Phosphonates Containing a Second Phosphonate Group Are Potent Inhibitors of 6-Oxopurine Phosphoribosyltransferases and Have Antimalarial Activity. J. Med. Chem. 2013, 56, 2513–2526. DOI: 10.1021/jm301893b.
  • Subramanyam, C.; Venkata Ramana, K.; Rasheed, S.; Adam, S.; Naga Raju, C. Synthesis and Biological Activity of Novel Diphenyl N-Substituted Carbamimidoylphosphoramidate Derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2013, 188, 1228–1235. DOI: 10.1080/10426507.2012.745075.
  • Katagi, T. Photochemistry of Organophosphorus Herbicide Butamifos. J. Agric. Food Chem. 1993, 41, 496–501. DOI: 10.1021/jf00027a028.
  • Mc Guigan, C.; Pathirana, R. N.; Balzarini, J.; De Clercq, E. Intracellular Delivery of Bioactive AZT Nucleotides by Aryl Phosphate Derivatives of AZT. J. Med. Chem. 1993, 36, 1048–1052. DOI: 10.1021/jm00060a013.
  • Zlatev, I.; Giraut, A.; Morvan, F.; Herdewijn, P.; Vasseur, J. Delta-Di-Carboxybutyl Phosphoramidate of 2'-Deoxycytidine-5'-Monophosphate as Substrate for DNA Polymerization by HIV-1 Reverse Transcriptase. Bioorg. Med. Chem. 2009, 17, 7008–7014. DOI: 10.1016/j.bmc.2009.08.001.
  • McGuigan, C.; Kelleher, M. R.; Perrone, P.; Mulready, S.; Luoni, G.; Daverio, F.; Rajyaguru, S.; Pogam, S. L.; Najera, I.; Martin, J. A.; et al. The Application of Phosphoramidate ProTide Technology to the Potent anti-HCV Compound 4'-azidocytidine (R1479) ). Bioorg. Med. Chem. Lett. 2009, 19, 4250–4254. DOI: 10.1016/j.bmcl.2009.05.099.
  • Donghi, M.; Attenni, B.; Gardelli, C.; Marco, A. D.; Fiore, F.; Giuliano, C.; Laufer, R.; Leone, J. F.; Pucci, V.; Rowley, M.; Narjes, F. Synthesis and Evaluation of Novel Phosphoramidate Prodrugs of 2'-Methyl Cytidine as Inhibitors of Hepatitis C Virus NS5B Polymerase . Bioorg. Med. Chem. Lett. 2009, 19, 1392–1395. DOI: 10.1016/j.bmcl.2009.01.035.
  • Kaur, R.; Dahiya, L.; Kumar, M. Fructose-1,6-Bisphosphatase Inhibitors: A New Valid Approach for Management of Type 2 Diabetes Mellitus. Eur. J. Med. Chem. 2017, 141, 473–505. DOI: 10.1016/j.ejmech.2017.09.029.
  • Sørensen, M. D.; Blaehr, L. K. A.; Christensen, M. K.; Høyer, T.; Latini, S.; Hjarnaa, P.-J. V.; Bj€Orkling, F. Cyclic Phosphinamides and Phosphonamides, Novel Series of Potent Matrix Metalloproteinase Inhibitors with Antitumour Activity. Bioorg. Med. Chem. 2003, 11, 5461–5484. DOI: 10.1016/j.bmc.2003.09.015.
  • Pikul, S.; McDow Dunham, K. L.; Almstead, N. G.; De, B.; Natchus, M. G.; Anastasio, M. V.; McPhail, S. J.; Snider, C. E.; Taiwo, Y. O.; Chen, L.; et al. Design and Synthesis of Phosphinamide-Based Hydroxamic Acids as Inhibitors of Matrix Metalloproteinases. J. Med. Chem. 1999, 42, 87–94. DOI: 10.1021/jm980142s.
  • Sawa, M.; Kiyoi, T.; Kurokawa, K.; Kumihara, H.; Yamamoto, M.; Miyasaka, T.; Ito, Y.; Hirayama, R.; Inoue, T.; Kirii, Y.; et al. New Type of Metalloproteinase Inhibitor: Design and Synthesis of New Phosphonamide-Based Hydroxamic Acids. J. Med. Chem. 2002, 45, 919–929. DOI: 10.1021/jm0103211.
  • Sawa, M.; Kondo, H.; Nishimura, S. Encounter with Unexpected Collagenase-1 Selective Inhibitor: Switchover of Inhibitor Binding Pocket Induced by Fluorine Atom. Bioorg. Med. Chem. Lett. 2002, 12, 581–584. DOI: 10.1016/s0960-894x(01)00796-x.
  • Sawa, M.; Kurokawa, K.; Inoue, Y.; Kondo, H.; Yoshino, K. Discovery of Selective Phosphonamide-Based Inhibitors of Tumor Necrosis Factor-Alpha Converting Enzyme (TACE). Bioorg. Med. Chem. Lett. 2003, 13, 2021–2024. DOI: 10.1016/s0960-894x(03)00292-0.
  • Buczko, A.; Stelzig, T.; Bommer, L.; Rentsch, D.; Heneczkowski, M.; Gaan, S. Bridged DOPO Derivatives as Flame Retardants for PA6. Polym. Degrad. Stab. 2014, 107, 158–165. DOI: 10.1016/j.polymdegradstab.2014.05.017.
  • Jian, R. K.; Wang, P.; Duan, W.; Wang, J. S.; Zheng, X.; Weng, J. Synthesis of a Novel P/N/S-Containing Flame Retardant and Its Application in Epoxy Resin: Thermal Property, Flame Retardance and Pyrolysis Behavior. Ind. Eng. Chem. Res. 2016, 55, 11520–11527. DOI: 10.1021/acs.iecr.6b03416.
  • Edwards, B.; El-Shafei, A.; Hauser, P.; Malshe, P. Towards Flame Retardant Cotton Fabrics by Atmospheric Pressure Plasma-Induced Graft Polymerization: Synthesis and Application of Novel Phosphoramidate Monomers. Surf. Coat. Technol. 2012, 209, 73–79. DOI: 10.1016/j.surfcoat.2012.08.031.
  • Chen, Y.; Zhang, J.; Chen, J.; Cao, X. Y.; Wang, J.; Zhao, Y. F. Sensitivity Improvement of Amino Acids by N-Terminal Diisopropyloxyphosphorylation in Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 469–474. DOI: 10.1002/rcm.1356.
  • Garcia, P.; Lau, Y. Y.; Perry, M. R.; Schafer, L. L. Phosphoramidate Tantalum Complexes for Room-Temperature C-H Functionalization: Hydroaminoalkylation Catalysis. Angew. Chem. Int. Ed. Engl. 2013, 52, 9144–9148. DOI: 10.1002/anie.201304153.
  • (a) Liu, W. B.; Zheng, C.; Zhuo, X.; Dai, L. X.; You. S. L. Iridium-Catalyzed Allylic Alkylation Reaction with N-Aryl Phosphoramidite Ligands: Scope and Mechanistic Studies. J. Am. Chem. Soc. 2012, 134, 4812–4822. DOI: 10.1021/ja210923k. (b) Molt, O.; Schrader, T. Asymmetric Synthesis with Chiral Cyclic Phosphorus Auxiliares. Synthesis. 2002, 2633–2670. DOI: 10.1055/s-2002-35977.
  • Yan, Y.; Bu, J.; Bai, X.; Li, J.; Ren, T.; Zhao, Y. The Tribological Study of Novel Phosphorous–Nitrogen Type Phosphoramidate Additives in Rapeseed Oil. J. Eng. Tribol. 2012, 226, 377–388. DOI: 10.1177/1350650111435034.
  • Atherton, F. R.; Openshaw, H. T.; Todd, A. R. 174. Studies on Phosphorylation. Part II. The Reaction of Dialkyl Phosphites with Polyhalogen Compounds in Presence of Bases. A New Method for the Phosphorylation of Amines. J. Chem. Soc. 1945, 17, 660–663. DOI: 10.1039/JR9450000660.
  • Kabachnik, I.; Gilyarov, V. A. Izv. Akad. Nauk SSSR. Otd. Khim. Nauk 1956, 790–794.
  • Cho, A.; Zhang, L.; Xu, J.; Lee, R.; Butler, T.; Metobo, S.; Aktoudianakis, V.; Lew, W.; Ye, H.; Clarke, M.; et al. Discovery of the First C-Nucleoside HCV Polymerase Inhibitor (GS-6620) with Demonstrated Antiviral Response in HCV Infected Patients. J. Med. Chem. 2014, 57, 1812–1825. DOI: 10.1021/jm400201a.
  • Fraser, J.; Wilson, L. J.; Blundell, R. K.; Hayes, C. J. Phosphoramidate Synthesis via Copper-Catalysed Aerobic Oxidative Coupling of Amines and H-Phosphonates. Chem. Commun. (Camb) .) 2013, 49, 8919–8921. DOI: 10.1039/C3CC45680C.
  • Le Corre, S. S.; Berchel, M.; Gourvès, H. C.; Haelters, J. P.; Jaffrès, P. A. Atherton-Todd Reaction: Mechanism, Scope and Applications. Beilstein J. Org. Chem. 2014, 10, 1166–1196. DOI: 10.3762/bjoc.10.117.
  • Dangroo, N. A.; Dar, A. A.; Shankar, R.; Khuroo, M. A.; Sangwan, P. L. An Efficient Synthesis of Phosphoramidates from Halides in Aqueous Ethanol. Tetrahedron Lett. 2016, 57, 2717–2722. DOI: 10.1016/j.tetlet.2016.05.003.
  • Haggam, R.; Conrad, J.; Beifuss, U. Practical and Reliable Synthesis of Dialkyl N-Arylphosphoramidates with Nitroarenes as Substrates. Tetrahedron Lett. 2009, 50, 6627–6630. DOI: 10.1016/j.tetlet.2009.09.037.
  • Mitova, V.; Koseva, N.; Troev, K. Study on the Atherton–Todd Reaction Mechanism. RSC Adv. 2014, 4, 64733–64736. DOI: 10.1039/C4RA10228B.
  • Dar, B. A. Catalyst Free, One Pot Synthesis of Phosphoramidates under Environment Friendly Conditions. J. Ind. Eng. Chem. 2016, 36, 194–197. DOI: 10.1016/j.jiec.2016.01.041.
  • Li, Q.; Sun, X.; Yang, X.; Wu, M.; Sun, S.; Chen, X. Transition-Metal-Free Amination Phosphoryl Azide for the Synthesis of Phosphoramidates. RSC Adv. 2019, 9, 16040–16043. DOI: 10.1039/C9RA03389K.
  • Tang, Y.; Wang, D. Y.; Jing, X. K.; Ge, X. G.; Yang, B.; Wang, Y. Z. A Formaldehyde-Free Flame-Retardant Wood Particleboard System Based on Two-Component Polyurethane Adhesive. J. Appl. Polym. Sci. 2008, 108, 1216–1222. DOI: 10.1002/app.27662.
  • Jiang, Z.; Xu, D.; Ma, X.; Liu, J.; Zhu, P. Facile Synthesis of Novel Reactive Phosphoramidate Siloxane and Application to Flame Retardant Cellulose Fabrics. Cellulose 2019, 26, 5783–5796. DOI: 10.1007/s10570-019-02465-2.
  • Wang, S.; Xu, D.; Liu, Y.; Jiang, Z.; Zhu, P. Preparation and Mechanism of Phosphoramidate-Based Sol-Gel Coating for Flame-Retardant Viscose Fabric. Polym. Degrad. Stab. 2021, 190, 109620–109620. DOI: org/ DOI: 10.1016/j.polymdegradstab.2021.109620.
  • Gaan, S.; Rupper, P.; Salimova, V.; Heuberger, M.; Rabe, S.; Vogel, F. Thermal Decomposition and Burning Behavior of Cellulose Treated with Ethyl Ester Phosphoramidates: Effect of Alkyl Substituent on Nitrogen Atom. Polym. Degrad. Stab. 2009, 94, 1125–1134. DOI: 10.1016/j.polymdegradstab.2009.03.017.
  • Nguyen, T. M.; Chang, S. C.; Condon, B.; Slopek, R.; Graves, E.; Yoshioka-Tarver, M. Structural Effect of Phosphoramidate Derivatives on the Thermal and Flame-Retardant Behaviors of Treated Cotton Cellulose. Ind. Eng. Chem. Res. 2013, 52, 4715–4724. DOI: 10.1021/ie400180f.
  • Illy, N.; Fache, M.; Menard, R.; Negrell, C.; Caillol, S.; David, G. Phosphorylation of Bio-Based Compounds: The State of the Art. Polym. Chem. 2015, 6, 6257–6291. DOI: 10.1039/C5PY00812C.
  • Zhang, C.; Jiang, Z.; Zhu, S.; Zhu, P. Eco-Friendly and Efficient Flame-Retardant Cotton Fabric Based on a Multi-Hydroxyl Hyperbranched Phosphoramidate. Cellulose 2021, 28, 1857–1872. DOI: 10.1007/s10570-020-03645-1.
  • Tawiah, B.; Yu, B.; Wei, R.; Yuen, R. K. K.; Chen, W.; Xin, J. H.; Fei, B. Simultaneous Fire Safety Enhancement and Mechanical Reinforcement of Poly(Lactic Acid) Biocomposites with Hexaphenyl (Nitrilotris(ethane-2,1-diyl))tris(phosphoramidate)). J. Hazard. Mater. 2019, 380, 120856 DOI: 10.1016/j.jhazmat.2019.120856.
  • Liu, L.; Xu, Y.; Pan, Y.; Xu, M.; Di, Y.; Li, B. Facile Synthesis of an Efficient Phosphonamide Flame Retardant for Simultaneous Enhancement of Fire Safety and Crystallization Rate of Poly (Lactic Acid). Chem. Eng. J. 2021, 421, 127761. DOI: org/ DOI: 10.1016/j.cej.2020.127761.
  • Çalışkan, E.; Çanak, T. Ç.; Karahasanoğlu, M.; Serhatlı, I. E. Synthesis and Characterization of Phosphorus-Based Flame Retardant Containing Rigid Polyurethane Foam. J. Therm. Anal. Calorim. 2021, DOI: org/ DOI: 10.1007/s10973-021-10837-9.
  • Itumoh, E. J.; Data, S.; Leitao, E. M. Opening up the Toolbox: Synthesis and Mechanisms of Phosphoramidates. Molecules 2020, 25, 3684. DOI: 10.3390/molecules25163684.
  • Muff, T. J.; Ordal, G. W. In Methods in Enzymology. Two‐Component Signaling Systems, Part B 2007, 423, 336–348.
  • Kolodiazhnyi, O. I. Phosphorus Compounds of Natural Origin: Prebiotic, Stereochemistry, Application. Symmetry 2021, 13, 889. DOI: 10.3390/sym13050889.
  • Timperley, C. M. Phosphoryl Compounds. Best Synth. Methods, Chapter 2, 2015, 91–325. DOI: 10.1016/B978-0-08-098212-0.00002-9.
  • Sandahl, A. F.; Nguyen, T. J. D.; Hansen, R. A.; Johansen, M. B.; Skrydstrup, T.; Gothelf, K. V. On-demand synthesis of phosphoramidites . Nat. Commun. 2021, 12, 2760 DOI: 10.1038/s41467-021-22945-z.
  • Slusarczyk, M.; Serpi, M.; Pertusati, F. Phosphoramidates and Phosphonamidates (ProTides) with Antiviral Activity. Antivir. Chem. Chemother. 2018, 26, 2040206618775243. DOI: 10.1177/2040206618775243.
  • Serpi, M.; De Biasi, R.; Pertusati, F.; Slusarczyk, M.; McGuigan, C. Synthetic Approaches for the Preparation of Phosphoramidate Prodrugs of 2'-Deoxypseudoisocytidine. ChemistryOpen 2017, 6, 424–436. DOI: 10.1002/open.201700019.
  • Gholivand, K.; Sabaghian, M.; Eshaghi Malekshah, R. Synthesis, Characterization, Cytotoxicity Studies, Theoretical Approach of Adsorptive Removal and Molecular Calculations of Four New Phosphoramide Derivatives and Related Graphene Oxide. Bioorg. Chem. 2021, 115, 105193 DOI: 10.1016/j.bioorg.2021.105193.
  • Subratti, A.; Lalgee, L. J.; Jalsa, N. K. Synthesis and Characteristics of Sugar Phosphoramidates: A Spectroscopic Study. Tetrahedron Lett. 2018, 59, 3384–3388. DOI: 10.1016/j.tetlet.2018.07.066.
  • Subratti, A.; Ramkissoon, A.; Lalgee, L. J.; Jalsa, N. K. Synthesis and Evaluation of the antibiotic-adjuvant activity of carbohydrate-based phosphoramidate derivatives. Carbohydr. Res. 2021, 500, 108216 DOI: 10.1016/j.carres.2020.108216.
  • Chen, B.; Mapp, A. K. Thermal and Catalyzed [3,3]-Phosphorimidate Rearrangements. J. Am. Chem. Soc. 2005, 127, 6712–6718. DOI: 10.1021/ja050759g.
  • Gholivand, K.; Roshanian, Z.; Dashtaki, M. R.; Hosseini, Z.; Valmoozi, A. A. E.; Sharifi, M.; Mohammadpanah, F.; Rajabi, M.; Ghadamyari, M.; Farshadian1, S.; et al. Monophosphoramide Derivatives: Synthesis and Crystal Structure, Theoretical and Experimental Studies of Their Biological Effects. Mol. Divers. 2021, in press. DOI: 10.1007/s11030-020-10160-9.
  • Gholivand, K.; VéDova, C. O. D.; Erben, M. F.; Mahzouni, H. R.; Shariatinia, Z.; Amiri, S. Synthesis, Spectroscopic Study, X-Ray Crystallography and ab Initio Calculations of the Two New Phosphoramidates: C6H5OP(O)(NHC6H11)2 and [N(CH3)(C6H11)]P(O)(2-C5H4N-NH)2. J. Mol. Struct. 2008, 874, 178–186. DOI: 10.1016/j.molstruc.2007.03.047.
  • Nayab Rasool, S. K.; Subramanyam, C.; Janakiramudu, D. B.; Supraja, P.; Usha, R.; Naga Raju, C. Convenient One-Pot Synthesis and Biological Evaluation of Phosphoramidates and Phosphonates Containing Heterocycles. Phosphorus Sulfur Relat. Elem. 2018, 193, 470–474. DOI: 10.1080/10426507.2018.1452229.
  • Lewandowska, M.; Ruszkowski, P.; Baraniak, D.; Czarnecka, A.; Kleczewska, N.; Celewicz, L. Synthesis of 3'-azido-2',3'-dideoxy-5-fluorouridine phosphoramidates and evaluation of their anticancer activity. Eur. J. Med. Chem. 2013, 67, 188–195. DOI: 10.1016/j.ejmech.2013.06.047.
  • Lewandowska, M.; Ruszkowski, P.; Chojnacka, K.; Kleczewska, N.; Hoffmann, M.; Kacprzak, K.; Celewicz, L. Synthesis and Anticancer Activity of Some 5-fluoro-2'-deoxyuridine phosphoramidates . Bioorg. Med. Chem. 2016, 24, 2330–2341. DOI: 10.1016/j.bmc.2016.04.003.
  • Kleczewskaa, N.; Ruszkowskib, P.; Singha, A.; Trznadela, R.; Celewicza, L. Synthesis and Anticancer Activity of 3′-[4-Fluoroaryl-(1,2,3-Triazol-1-yl)]-3′-Deoxythymidine Analogs and Their Phosphoramidates. Nucleosides. Nucleotides. Nucleic Acids 2019, 38, 605–641. DOI: 10.1080/15257770.2019.1594282.
  • Gamble, M. P.; Smith, A. R. C.; Wills, M. A Novel Phosphinamide Catalyst for the Asymmetric Reduction of Ketones by Borane. J. Org. Chem. 1998, 63, 6068–6071. DOI: 10.1021/jo980674g.
  • Pettit, G. R.; Anderson, C. R.; Gapud, E. J.; Jung, M. K.; Knight, J. C.; Hamel, E.; Pettit, R. K. Antineoplastic Agents. 515. Synthesis of Human Cancer Cell Growth Inhibitors Derived from 3,4-Methylenedioxy-5,4'-Dimethoxy-3'-Amino-Z-Stilbene. J. Nat. Prod. 2005, 68, 1191–1197. DOI: 10.1021/np058033l.
  • Wang, Z. W.; Cheng. Guo, C.; Zhong. Xie, W.; Liu, C. Z.; Xiao, C. G.; Tan, Z. Novel Phosphoramidates with Porphine and Nitrogenous Drug: One-Pot Synthesis and Orientation to Cancer Cells. Eur. J. Med. Chem. 2010, 45, 890–895. DOI: 10.1016/j.ejmech.2009.11.027.
  • Adler, A. D.; Longo, F. R.; Finarelli, J. D.; Goldmacher, J.; Assour, J.; Korsakoff, L. A Simplified Synthesis for Meso-Tetraphenylporphine. J. Org. Chem. 1967, 32, 476–476. 32, DOI: org/ DOI: 10.1021/jo01288a053.
  • Lindsey, J. S.; Schreiman, I. C.; Hsu, H. C.; Kearney, P. C.; Marguerettaz, A. M. Rothemund and Adler-Longo Reactions Revisited: synthesis of Tetraphenylporphyrins under Equilibrium Conditions. J. Org. Chem. 1987, 52, 827–836. DOI: 10.1021/jo00381a022.
  • Rahil, J.; Haake, P. Reactivity and Mechanism of Hydrolysis of Phosphonamides. J. Am. Chem. Soc. 1981, 103, 1723–1734. DOI: 10.1021/ja00397a024.
  • Lorenz, P.; Wiessler, M. Synthesen Von N,N-Di(2-Chlorethyl)-N'-Alkylphosphorsaurediamiden. Arch. Pharm. Pharm. Med. Chem. 1985, 318, 577–582. DOI: 10.1002/ardp.19853180702.
  • Friedman, O. M.; Seligman, A. M. Preparation of Naphthyl Acid Phosphates1. J. Am. Chem. Soc. 1950, 72, 624–625. DOI: 10.1021/ja01157a505.
  • Ravoo, B. J.; Weringa, W. D.; Engberts, J. B. F. N. Design and Characterization of Synthetic Bilayer Vesicles with a Polymerized Inner Bilayer Leaflet. Langmuir 1996, 12, 5773–5780. DOI: 10.1021/la960322.
  • Adeyemi, C. M.; Hoppe, H. C.; Isaacs, M.; Mnkandhla, D.; Lobb, K. A.; Klein, R.; Kaye, P. T. Synthesis and anti-Parasitic Activity of N-Benzylated Phosphoramidate Mg2+-Chelating Ligands. Bioorg. Chem. 2020, 105, 104280 DOI: 10.1016/j.bioorg.2020.104280.
  • Zelle, R. E.; McClellan, W. J. A Simple, High-Yielding Method for the Methylenation of Catechols. Tetrahedron Lett. 1991, 32, 2461–2464. DOI: 10.1016/S0040-4039(00)74353-X.
  • Lianghui, L.; Siyu, Z.; Xuefeng, F.; Chun-Hua, Y. Metal-Free Aerobic Oxidative Coupling of Amines to Imines. Chem. Commun. 2011, 47, 10148–10150. DOI: 10.1039/C1CC13202D.
  • Zhanhui, Y.; Ning, C.; Jiaxi, X. Substituent-Controlled Annuloselectivity and Stereoselectivity in the Sulfa-Staudinger Cycloadditions. J. Org. Chem. 2015, 80, 3611–3620. DOI: 10.1021/acs.joc.5b00312.
  • Faler, C. A.; Joullie, M. M. The Kulinkovich Reaction in the Synthesis of Constrained N,N-Dialkyl Neurotransmitter Analogues. Org. Lett. 2007, 9, 1987–1990. DOI: 10.1021/ol0705907.
  • Zakirova, N. F.; Shipitsyn, A. V.; Jasko, M. V.; Prokofjeva, M. M.; Andronova, V. L.; Galegov, G. A.; Prassolov, V. S.; Kochetkov, S. N. Phosphoramidate Derivatives of Acyclovir: Synthesis and Antiviral Activity in HIV-1 and HSV-1 Models in vitro. Bioorg. Med. Chem. 2012, 20, 5802–5809. DOI: 10.1016/j.bmc.2012.08.008.
  • Zakirova, N. F.; Shipitsyn, A. V.; Jasko, M. V.; Kochetkov, S. N. Phosphoramidate Derivatives of Acyclovir, Inhibitors of Herpes Virus Replication. Russ. J. Bioorg. Chem. 2011, 37, 578–585. DOI: org/ DOI: 10.1134/S1068162011050190.
  • Olatunji, F. P.; Herman, J. W.; Kesic, B. N.; Olabode, D.; Berkman, C. E. A Click-Ready pH-Triggered Phosphoramidate-Based Linker for Controlled Release of Monomethyl Auristatin E. Tetrahedron Lett. 2020, 61, 152398. DOI: org/ DOI: 10.1016/j.tetlet.2020.152398.
  • Clark, T. J.; Rodezno, J. M.; Clendenning, S. B.; Aouba, S.; Brodersen, P. M.; Lough, A. J.; Ruda, H. E.; Manners, I. Rhodium-Catalyzed Dehydrocoupling of Fluorinated Phosphine-Borane Adducts: Synthesis, Characterization, and Properties of Cyclic and Polymeric Phosphinoboranes with Electron-Withdrawing Substituents at Phosphorus. Chemistry 2005, 11, 4526–4534. DOI: 10.1002/chem.200401296.
  • Lin, W.; Feng, S.; Hui-Jun, Z. Ting-Bin, W. K2S2O8-Promoted Direct C–H Phosphorylation of Benzothiazoles. Eur. J. Org. Chem. 2017, 13, 1757–1759. DOI: 10.1002/ejoc.201700022.
  • Khan, N. D.; Khan, H. Optimization of Phosphoramidates Synthetic Conditions1. Russ. J. Gen. Chem. 2018, 88, 564–565. DOI: 10.1134/S1070363218030271.
  • Seneviratne, U.; Wickramaratne, S.; Kotandeniya, D.; Groehler, A. S.; Geraghty, R. J.; Dreis, C.; Pujari, S. S.; Tretyakova, N. Y. Synthesis and Biological Evaluation of Pyrrolidine-Functionalized Nucleoside Analogs. Med. Chem. Res. 2021, 30, 483–499. DOI: 10.1007/s00044-021-02700-1.
  • Smolobochkin, A. V.; Turmanov, R. A.; Gazizov, A. S.; Kuznetsova, E. A.; Burilov, R.; Pudovik, M. A. Reaction of N-(4,4-Diethoxybutyl)Phosphamides with Chloro(Diphenyl)Phosphine. Synthesis of 2-(Diphenylphosphoryl)Pyrrolidines. Russ. J. Org. Chem. 2020, 56, 1119–1121. DOI: 10.1134/S107042802006024X.
  • Zhang, S.; Li, T.; Pang, W.; Wu, J.; Wu, F.; Liu, Y.; Wu, F. Synthesis, Biological Evaluation and Molecular Docking Studies of Combretastatin A-4 Phosphoramidates as Novel Anticancer Prodrugs. Med. Chem. Res. 2020, 29, 2192–2202. DOI: 10.1007/s00044-020-02632-2.
  • Zhao, L.; Zhou, J.-J.; Huang, X.-Y.; Cheng, L.-P.; Pang, W.; Kai, Z.-P.; Wu, F.-H. Synthesis and anti-Proliferative Effects in Tumor Cells of New Combretastatin A-4 Analogs. Chin. Chem Lett. 2015, 26, 993–999. Design. DOI: 10.1016/j.cclet.2015.05.003.
  • Rawal, R. K.; Singh, U. S.; Chavre, S. N.; Wang, J.; Sugiyama, M.; Hung, W.; Govindarajan, R.; Korba, B.; Tanaka, Y.; Chu, C. K. 2'-Fluoro-6'-Methylene-Carbocyclic Adenosine Phosphoramidate (FMCAP) Prodrug: In Vitro Anti-HBV Activity against the Lamivudine-Entecavir Resistant Triple Mutant and Its Mechanism of Action. Bioorg. Med. Chem. Lett. 2013, 23, 503–506. DOI: 10.1016/j.bmcl.2012.11.027.
  • McGuigan, C.; Pathirana, R. N.; Mahmood, N.; Devine, K. G.; Hay, A. Aryl Phosphate Derivatives of AZT Retain Activity against HIV1 in Cell Lines Which Are Resistant to the Action of AZT. J. Antiviral Res. 1992, 17, 311–321. DOI: 10.1016/0166-3542(92)90026-2.
  • Liang, Y.; Narayanasamy, J.; Schinazi, R. F.; Chu, C. K. Phosphoramidate and Phosphate Prodrugs of (-)-Beta-D-(2R,4R)-Dioxolane-Thymine: Synthesis, Anti-HIV Activity and Stability Studies. Bioorg. Med. Chem. 2006, 14, 2178–2189. DOI: 10.1016/j.bmc.2005.11.008.
  • Oliveira, F. M.; Barbosa, L. C. A.; Demuner, A. J.; Maltha, C. R. A.; Fernandes, S. A.; de, M.; Carneiro, J. W.; Corrêa, R. S.; Doriguetto, A. C. Spectroscopic and Dynamic NMR Study, X-Ray Crystallography and DFT Calculations of Two Phosphoramidates: (C4H3O2)P(O)(Cl)C6H14N and (C4H3O2)P(O)(C6H11NH)2. J. Mol. Struct. 2013, 1046, 64–73. doi: 10.1016/j.molstruc.2013.04.059.
  • Paula, V. F.; Barbosa, L. C. A.; Teixeira, R. R.; Picanço, M. C.; Silva, G. A. Synthesis and Insecticidal Activity of New 3-Benzylfuran-2-yl N,N,N',N'-Tetraethyldiamidophosphate Derivatives. Pest Manage. Sci. 2008, 64, 863–872. DOI: 10.1002/ps.1559.
  • Oliveira, F. M.; Barbosa, L. C. A.; Teixeira, R. R.; Demuner, A. J.; Maltha, C. R. A.; Picanço, M. C.; Silva, G. A.; Paula, V. F. Synthesis and Insecticidal Activity of New Phosphoramidates. J. Pestic. Sci. 2012, 37, 85–88. DOI: 10.1584/jpestics.D11-014.
  • Ji, Q.; Ge, Z.; Ge, Z.; Chen, K.; Wu, H.; Liu, X.; Huang, Y.; Yuan, L.; Yang, X.; Liao, F. Synthesis and Biological Evaluation of Novel Phosphoramidate Derivatives of Coumarin as Chitin Synthase Inhibitors and Antifungal Agents. Eur. J. Med. Chem. 2016, 108, 166–176. DOI: 10.1016/j.ejmech.2015.11.027.
  • Ma, C. M.; Cao, R. H.; Shi, B. X.; Li, S. X.; Chen, Z. Y.; Yi, W.; Peng, W. L.; Ren, Z. H.; Song, H. C. Synthesis and Cytotoxic Evaluation of N2-Benzylated Quaternary Beta-Carboline Amino Acid Ester Conjugates . Eur. J. Med. Chem. 2010, 45, 1515–1523. DOI: 10.1016/j.ejmech.2009.12.060.
  • Slusarczyk, M.; Lopez, M. H.; Balzarini, J.; Mason, M.; Jiang, W. G.; Blagden, S.; Thompson, E.; Ghazaly, E.; McGuigan, C. Application of ProTide Technology to Gemcitabine: A Successful Approach to Overcome the Key Cancer Resistance Mechanisms Leads to a New Agent (NUC-1031) in Clinical Development. J. Med. Chem. 2014, 57, 1531–1542. DOI: 10.1021/jm401853a.
  • Buckle, D. R.; Cantello, B. C. C.; Smith, H.; Spicer, B. A. Antiallergic Activity of 4-Hydroxy-3-Nitrocoumarins. J. Med. Chem. 1975, 18, 391–394. DOI: 10.1021/jm00238a014.
  • Rao, M. L. N.; Kumar, A. Pd-Catalyzed Chemo-Selective Mono-Arylations and Bisarylations of Functionalized 4-Chlorocoumarins with Triarylbismuths as Threefold Arylating Reagents. Tetrahedron 2014, 70, 6995–7005. DOI: 10.1016/j.tet.2014.07.059.
  • Dong, Y. Z.; Nakagawa-Goto, K.; Lai, C. Y.; Morris-Natschke, S. L.; Bastow, K. F.; Lee, K. H. Antitumor Agents 281. Design, Synthesis, and Biological Activity of Substituted 4-Amino-7,8,9,10-Tetrahydro-2H-Benzo[h]Chromen-2-One Analogs (ATBO) as Potent in Vitro Anticancer Agents. Bioorg. Med. Chem. Lett. 2011, 21, 546–549. DOI: 10.1016/j.bmcl.2010.10.074.
  • Olatunji, F. P.; Kesic, B. N.; Choy, C. J.; Berkman, C. E. Phosphoramidate Derivates as Controlled-Release Prodrugs of L-Dopa. Bioorg. Med. Chem. Lett. 2019, 29, 2571–2574. DOI: 10.1016/j.bmcl.2019.08.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.