193
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

1H NMR spectra, structure, and conformational exchange of S-n-alkyl-tetrahydrothiophenium cations of some ionic liquids

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 788-798 | Received 29 Nov 2021, Accepted 22 Dec 2021, Published online: 10 Jan 2022

References

  • Wasserscheid, P.; Keim, W. Ionic Liquids—New “Solutions” for Transition Metal Catalysis. Angew. Chem. Int. Ed. 2000, 39, 3772–3789. DOI: 10.1002/1521-3773(20001103)39:21 < 3772::AID-ANIE3772 > 3.0.CO;2-5.
  • von Braun, J.; Trümper, A. Űber Das Tetrahydrothiophen Und Das Cyclo-Pentamethylensulfid. Ber. Dtsch. Chem. Ges. 1910, 43, 545–551. DOI: 10.1002/cber.19100430193.
  • Umehara, M.; Kanai, K.; Kitano, H.; Fukui, K. Syntheses of S-Alkyltetramethylenesulfonium Compounds. Nippon Kagaku Zasshi 1962, 83, 1060–1064. DOI: 10.1246/nikkashi1948.83.9_1060.
  • Garbesi, A.; Corsi, N.; Fava, A. Pyramidal Inversion in Cyclic Sulfonium Salts. Helv. Chim. Acta 1970, 53, 1499–1502. DOI: 10.1002/hlca.19700530635.
  • Barbarella, G.; Garbesi, A.; Fava, A. Base-Catalysed H-D Exchange in 1-Methylthiolanium Iodide. Helv. Chim. Acta 1971, 54, 341–343. DOI: 10.1002/hlca.19710540135.
  • Garbesi, A.; Barbarella, G.; Fava, A. Stereochemistry of the Hydrogen-Deuterium Base-Catalysed Exchange and Conformation of Cyclic Five-Membered Sulphonium Cations. J. Chem. Soc. Chem. Commun. 1973, 155–156. DOI: 10.1039/C39730000155.
  • Wenzel, T. J.; Zaia, J. Organic-Soluble Lanthanide Nuclear Magnetic Resonance Shift Reagents for Sulfonium and Isothiouronium Salts. Anal. Chem. 1987, 59, 562–572. DOI: 10.1021/ac00131a006.
  • Zhang, Q.; Liu, S.; Li, Z.; Li, J.; Chen, Z.; Wang, R.; Lu, L.; Deng, Y. Novel Cyclic Sulfonium-Based Ionic Liquids: Synthesis, Characterization, and Physicochemical Properties. Chemistry 2009, 15, 765–778. DOI: 10.1002/chem.200800610.
  • Guo, L.; Pan, X.; Zhang, C.; Wang, M.; Cai, M.; Fang, X.; Dai, S. Novel Hydrophobic Cyclic Sulfonium-Based Ionic Liquids as Potential Electrolyte. J. Mol. Liq. 2011, 158, 75–79. DOI: 10.1016/j.molliq.2010.10.011.
  • Neale, A. R.; Murphy, S.; Goodrich, P.; Schütter, C.; Hardacre, C.; Passerini, S.; Balducci, A.; Jacquemin, J. An Ether-Functionalised Cyclic Sulfonium Based Ionic Liquid as an Electrolyte for Electrochemical Double Layer Capacitors. J. Power Sources 2016, 326, 549–559. DOI: 10.1016/j.jpowsour.2016.06.085.
  • Rutz, C.; Schmolke, L.; Gvilava, V.; Janiak, C. Anion Analysis of Ionic Liquids and Ionic Liquid Purity Assessment by Ion Chromatography. Z Anorg. Allg. Chem. 2017, 643, 130–135. DOI: 10.1002/zaac.201600437.
  • Schiel, M. A.; de la Concepción, J. G.; Domini, C. E.; Cintas, P.; Silbestri, G. F. Formation of S-Alkyl Thiophenium Ionic Liquids: Mechanistic Rationale and Structural Relationships. Org. Biomol. Chem. 2019, 17, 7772–7781. DOI: 10.1039/c9ob01181a.
  • Zhang, H. Q.; Yang, L.; Fang, S. H.; Peng, C. X.; Luo, H. J. Ionic Liquids Based on S-Alkylthiolanium Cations and TFSI Anion as Potential Electrolytes. Chin. Sci. Bull. 2009, 54, 1322–1327. DOI: 10.1007/s11434-009-0038-1.
  • Guo, L.; Pan, X.; Zhang, C.; Liu, W.; Wang, M.; Fang, X.; Dai, S. Ionic Liquid Electrolyte Based on S-Propyltetrahydrothiophenium Iodide for Dye-Sensitized Solar Cells. Sol. Energy 2010, 84, 373–378. DOI: 10.1016/j.solener.2009.11.008.
  • Guo, L.; Pan, X.; Wang, M.; Zhang, C.; Fang, X.; Chen, S.; Dai, S. Novel Hydrophobic Ionic Liquids Electrolyte Based on Cyclic Sulfonium Used in Dye-Sensitized Solar Cells. Sol. Energy 2011, 85, 7–11. DOI: 10.1016/j.solener.2010.11.010.
  • Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539. DOI: 10.1039/c5cs00303b.
  • Orita, A.; Kamijima, K.; Yoshida, M.; Yang, L. Application of Sulfonium-, Thiophenium-, and Thioxonium-Based Salts as Electric Double-Layer Capacitor Electrolytes. J. Power Sources 2010, 195, 6970–6976. DOI: 10.1016/j.jpowsour.2010.04.028.
  • Schmitz, A.; Bülow, M.; Schmidt, D.; Zaitsau, D. H.; Junglas, F.; Knedel, T. O.; Verevkin, S. P.; Held, C.; Janiak, C. Tetrahydrothiophene-Based Ionic Liquids: Synthesis and Thermodynamic Characterizations. ChemistryOpen 2021, 10, 153–163. DOI: 10.1002/open.202000228.
  • Bülow, M.; Schmitz, A.; Mahmoudi, T.; Schmidt, D.; Junglas, F.; Janiak, C.; Held, C. Odd–Even Effect for Efficient Bioreactions of Chiral Alcohols and Boosted Stability of the Enzyme. RSC Adv. 2020, 10, 28351–28354. DOI: 10.1039/D0RA05406B.
  • Abraham, R. J.; Bernstein, H. J. The Proton Magnetic Resonance Spectrum of Thiophene. Can. J. Chem. 1959, 37, 2095–2097. DOI: 10.1139/v59-307.
  • Grant, D. M.; Hirst, R. C.; Gutowsky, H. S. Analysis of A2B2 High‐Resolution NMR Spectra. I. Furan, Thiophene, and Disubstituted Benzenes. J. Chem. Phys. 1963, 38, 470–487. DOI: 10.1063/1.1733683.
  • Haigh, C. W. Notation for Spin Systems in Nuclear Magnetic Resonance Spectroscopy. J. Chem. Soc. A. 1970, 1682–1683. DOI: 10.1039/j19700001682.
  • Lozach, R.; Braillon, B. Analysis of the Proton NMR Spectra of 2,5-Dihydrofuran, 2,5-Dihydrothiophene, and Butadiene Sulfone. J. Magn. Reson. 1973, 12, 244–260. DOI: 10.1016/0022-2364(73)90110-8.
  • Lozach, R.; Lemarié, B.; Braillon, B. Analyse des Spectres de RMN Protonique du Tétrahydrofuranne et du Tetrahydrothiophene. J. Chim. Phys. 1975, 72, 873–877. DOI: 10.1051/jcp/1975720873.
  • Esteban, A. L.; Diéz, E. Complete Analysis of the 1H NMR Spectrum of Tetrahydrothiophene. Can. J. Chem. 1980, 58, 2340–2348. DOI: 10.1139/v80-377.
  • Abraham, R. J.; Byrne, J. J.; Griffiths, L. 1H Chemical Shifts in NMR. Part 27: Proton Chemical Shifts in Sulfoxides and Sulfones and the Magnetic Anisotropy, Electric Field and Steric Effects of the SO Bond. Magn. Reson. Chem. 2008, 46, 667–675. DOI: 10.1002/mrc.2229.
  • Miyoshi, F.; Tokuno, K.; Watanabé, T.; Matsui, M.; Ohashi, T. [Organic Sulfur Compounds. IV. The Phase Transition of 1-Methylthiolanium Iodide (Author’s Trans)]. Yakugaku Zasshi 1979, 99, 924–928. DOI: 10.1248/yakushi1947.99.9_924.
  • Barbarella, G.; Rossini, S.; Bongini, A.; Tugnoli, V. Force Field and Multinuclear NMR Study of the Conformational Properties of Thiolane-1-Oxide and Its Mono and Dimethyl Derivatives. Tetrahedron 1985, 41, 4691–4701 and references therein. DOI: 10.1016/S0040-4020(01)82365-6.
  • Kilpatrick, J. E.; Pitzer, K. S.; Spitzer, K. The Thermodynamics and Molecular Structure of Cyclopentane. J. Am. Chem. Soc. 1947, 69, 2483–2488. DOI: 10.1021/ja01202a069.
  • Lambert, J. B.; Papay, J. J.; Khan, S. A.; Kappauf, K. A.; Magyar, E. S. Conformational Analysis of Five-Membered Rings. J. Am. Chem. Soc. 1974, 96, 6112–6118. DOI: 10.1021/ja00826a025.
  • Poupko, R.; Luz, Z.; Zimmermann, H. Pseudorotation in Cyclopentane. An Experimental Determination of the Puckering Amplitude by NMR in Oriented Solvents. J. Am. Chem. Soc. 1982, 104, 5307–5314. DOI: 10.1021/ja00384a008.
  • Bauman, L. E.; Laane, J. Pseudorotation of Cyclopentane and Its Deuterated Derivatives. J. Phys. Chem. 1988, 92, 1040–1051. DOI: 10.1021/j100316a011.
  • Wu, A.; Cremer, D.; Auer, A. A.; Gauss, J. Extension of the Karplus Relationship for NMR Spin−Spin Coupling Constants to Nonplanar Ring Systems: Pseudorotation of Cyclopentane. J. Phys. Chem. A. 2002, 106, 657–667. DOI: 10.1021/jp013160l.
  • Wenzel, T. J.; Cameron, K. NMR Shift Reagents for Organic Salts: Shift Mechanism, Bound Shifts and Structural Analysis. Magn. Reson. Chem. 1989, 27, 734–739. DOI: 10.1002/mrc.1260270805.
  • Dickinson, L. C.; Chesnut, D. B.; Quin, L. D. 33S NMR Spectra of Sulfonium Salts: Calculated and Experimental. Magn. Reson. Chem. 2004, 42, 1037–1041. DOI: 10.1002/mrc.1473.
  • Barone, G.; Duca, D.; Silvestri, A.; Gomez-Paloma, L.; Riccio, R.; Bifulco, G. Determination of the Relative Stereochemistry of Flexible Organic Compounds by Ab Initio Methods: Conformational Analysis and Boltzmann-Averaged GIAO 13C NMR Chemical Shifts. Chem. Eur. J. 2002, 8, 3240–3245. DOI: 10.1002/1521-3765(20020715)8:14 < 3240::AID-CHEM3240 > 3.0.CO;2-G.
  • Lodewyk, M. W.; Siebert, M. R.; Tantillo, D. J. Computational Prediction of 1H and 13C Chemical Shifts: A Useful Tool for Natural Product, Mechanistic, and Synthetic Organic Chemistry. Chem. Rev. 2012, 112, 1839–1862. DOI: 10.1021/cr200106v.
  • Buczek, A.; Makowski, M.; Jewgiński, M.; Latajka, R.; Kupka, T.; Broda, M. A. Toward Engineering Efficient Peptidomimetics. Screening Conformational Landscape of Two Modified Dehydroaminoacids. Biopolymers 2014, 101, 28–40. DOI: 10.1002/bip.22264.
  • Zinin, V.; Il’yasov, A.; Thiele, H.; Hägele, G.; Weber, U. WIN-DAISY: Application to Oriented Molecules. Analysis and Simulation of NEMA-NMR Spectra. Appl. Magn. Reson. 1995, 8, 311–317. DOI: 10.1007/BF03162793.
  • Weber, U.; Thiele, H. NMR Spectroscopy: Modern Spectral Analysis; Wiley VCH Verlag: Weinheim, Germany, 1998.
  • 1D WIN-NMR. Version 4.0; Bruker-Franzen Analytik GmbH: Bremen, Germany, 1993. http://kirste.userpage.fu-berlin.de/lehre/edv/win-nmr/win-nmr.html (accessed Jul 8, 2021).
  • TOPSPIN Users Guide. Version. 1.3; Bruker BioSpin GmbH: Rheinstetten, Germany, 2005. http://www2.chem.uic.edu/nmr/downloads/Topspin1p3_users_guide.pdf.
  • Hägele, G.; Engelhardt, M. TopSpin. Analysis of 1D NMR Spectra. A Practical Approach to Simple and Complex Spectral Structures. Version 001; Bruker Corporation: Rheinstetten, Germany, 2017; pp 1–916.
  • PCMODEL Version 8.50.0, Molecular Modeling Software for Windows Operating System, Apple Macintosh OS, Linux and Unix; Serena Software: Bloomington, IN, 2003.
  • Nazarski, R. B.; Leśniak, S. Physical Image vs. Structure Relation, 4. Configuration and Conformation Determination of Some Bicyclic Lactams by 1H NMR and Theoretical Methods. Bull. Pol. Acad. Sci. Chem. 2000, 48, 19–25.
  • Nazarski, R. B.; Lewkowski, J. A.; Skowroński, R. Rationalization of the Stereochemistry of an Addition of Dialkyl Phosphites to Certain Chiral Aldimines: The Experimental and Theoretical Approach. Heteroatom Chem. 2002, 13, 120–125. DOI: 10.1002/hc.10005.
  • Michalik, E.; Nazarski, R. B. Synthesis, Complete NMR Assignments, and NOE versus GIAO Data Assisted ab Initio Modelling the Overall Conformations of Amide 3,4'-Diquinolinyl Sulfides in Solution. Another Approach to Analysis of Flexible Systems. Tetrahedron 2004, 60, 9213–9222. DOI: 10.1016/j.tet.2004.07.058.
  • HyperChemTM – Molecular Modeling System, Release 8.0.10 for Windows; Hypercube, Inc.: Gainesville, FL, 2011.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, 2019.
  • Mirzaei, S.; Ivanov, M. V.; Timerghazin, Q. K. Improving Performance of the SMD Solvation Model: Bondi Radii Improve Predicted Aqueous Solvation Free Energies of Ions and pKa Values of Thiols. J. Phys. Chem. A. 2019, 123, 9498−9504. DOI: 10.1021/acs.jpca.9b02340.
  • Glukhovtsev, M. N.; Pross, A.; McGrath, M. P.; Radom, L. Extension of Gaussian-2 (G2) Theory to Bromine- and Iodine-Containing Molecules: Use of Effective Core Potentials. J. Chem. Phys. 1995, 103, 1878–1885. DOI: 10.1063/1.469712.
  • Pritchard, B. P.; Altarawy, D.; Didier, B.; Gibson, T. D.; Windus, T. L. New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community. J. Chem. Inf. Model. 2019, 59, 4814–4820. DOI: 10.1021/acs.jcim.9b00725.
  • Rauhut, G.; Puyear, S.; Wolinski, K.; Pulay, P. Comparison of NMR Shieldings Calculated from Hartree-Fock and Density Functional Wave Functions Using Gauge-Including Atomic Orbitals. J. Phys. Chem. 1996, 100, 6310–6316 and references therein. DOI: 10.1021/jp9529127.
  • Nazarski, R. B. Summary of DFT Calculations Coupled with Current Statistical and/or Artificial Neural Network (ANN) Methods to Assist Experimental NMR Data in Identifying Diastereomeric Structures. Tetrahedron Lett. 2021, 71, 152548 and references therein. DOI: 10.1016/j.tetlet.2020.152548.
  • Kupka, T.; Stachów, M.; Nieradka, M.; Kaminsky, J.; Pluta, T. Convergence of Nuclear Magnetic Shieldings in the Kohn-Sham Limit for Several Small Molecules. J. Chem. Theory Comput. 2010, 6, 1580–1589. DOI: 10.1021/ct100109j.
  • Venianakis, T.; Oikonomaki, C.; Siskos, M. G.; Primikyri, A.; Gerothanassis, I. P. DFT Calculations of 1H NMR Chemical Shifts of Geometric Isomers of Conjugated Linolenic Acids, Hexadecatrienyl Pheromones, and Model Triene-Containing Compounds: Structures in Solution and Revision of NMR Assignments. Molecules 2021, 26, 3477. DOI: 10.3390/molecules26113477.
  • Nazarski, R. B.; Wałejko, P.; Witkowski, S. Multi-conformer Molecules in Solutions: An NMR-based DFT/MP2 Conformational Study of Two Glucopyranosides of a Vitamin E Model Compound. Org. Biomol. Chem. 2016, 14, 3142–3158. DOI: 10.1039/c5ob01865j.
  • Nazarski, R. B.; Justyna, K.; Leśniak, S.; Chrostowska, A. A Benefit of Using the IDSCRF- over UFF-Radii Cavities and Why Joint Correlations of NMR Chemical Shifts Can Be Advantageous: Condensed Pyridines as an IEF-PCM/GIAO/DFT Case Study. J. Phys. Chem. A. 2016, 120, 9519−9528. DOI: 10.1021/acs.jpca.6b10457.
  • Tomasi, J.; Mennucci, B.; Cancès, E. The IEF Version of the PCM Solvation Method: An Overview of a New Method Addressed to Study Molecular Solutes at the QM ab Initio Level. J. Mol. Struct. THEOCHEM 1999, 464, 211–226. DOI: 10.1016/S0166-1280(98)00553-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.