187
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Reduction of phosphogypsum to calcium sulfide (CaS) using metallic iron in a hydrochloric acid medium

, , , , & ORCID Icon
Pages 1026-1035 | Received 14 Jun 2021, Accepted 09 Mar 2022, Published online: 18 Mar 2022

References

  • Ghisellini, P.; Cialani, C.; Ulgiati, S. A Review on Circular Economy: The Expected Transition to a Balanced Interplay of Environmental and Economic Systems. J. Cleaner Prod. 2016, 114, 11–32. DOI: 10.1016/j.jclepro.2015.09.007.
  • Luhar, S.; Cheng, T.-W.; Nicolaides, D.; Luhar, I.; Panias, D.; Sakkas, K. Valorisation of Glass Waste for Development of Geopolymer Composites–Mechanical Properties and Rheological Characteristics: A Review. Constr. Build. Mater. 2019, 220, 547–564. DOI: 10.1016/j.conbuildmat.2019.06.041.
  • Tayibi, H.; Choura, M.; López, F.-A.; Alguacil, F.-J.; López-Delgado, A. Environmental Impact and Management of Phosphogypsum. J. Environ. Manage. 2009, 90, 2377–2386. DOI: 10.1016/j.jenvman.2009.03.007.
  • Oumnih, S.; Gharibi, E.; Yousfi, E.-B.; Bekkouch, N.; El Hammouti, K. Posphogypsum Waste Valorization by Acid Attack with the Presence of Metallic Iron. J. Mater. Environ. Sci. 2017, 8, 338–344.
  • Tsioka, M.; Voudrias, E.-A. Comparison of Alternative Management Methods for Phosphogypsum Waste Using Life Cycle Analysis. J. Cleaner. Prod. 2020, 266, 121386. 2020 DOI: 10.1016/j.jclepro.2020.121386.
  • Ennaciri, Y.; Bettach, M.; Cherrat, A.; Zegzouti, A. Conversion of Phosphogypsum to Sodium Sulfate and Calcium Carbonate in Aqueous Solution. J. Mater. Environ. Sci. 2016, 7, 1925–1933.
  • De Ridder, M.; De Jong, S.; Polchar, J.; Lingemann, S. The Hague Centre for Strategic Studies (HCSS). Rapport No 17 | 12 | 12 ISBN/EAN: 978-94-91040-69-6, 2012.
  • Mar, S.-S.; Okazaki, M. Investigation of Cd Contents in Several Phosphate Rocks Used for the Production of Fertilizer. Microchem. J. 2012, 104, 17–21. DOI: 10.1016/j.microc.2012.03.020.
  • U.S. Geological Survey, Mineral commodity summaries 2012: U.S. Geological Survey, 2012, 198 p.
  • Cooper, J.; Lombardi, R.; Boardman, D.; Carliell-Marquet, C. The Future Distribution and Production of Global Phosphate Rock Reserves. Resour. Conserv. Recycl. 2011, 57, 78–86. DOI: 10.1016/j.resconrec.2011.09.009.
  • Walan, P.; Davidsson, S.; Johansson, S.; Höök, M. Phosphate Rock Production and Depletion: Regional Disaggregated Modeling and Global Implications. Resour., Conserv. Recycl. 2014, 93, 178–187. DOI: 10.1016/j.resconrec.2014.10.011.
  • Hammas, I.; Horchani-Naifer, K.; Férid, M. Solubility Study and Valorization of Phosphogypsum Salt Solution. Inter. J. Miner. Process. 2013, 123, 87–93. DOI: 10.1016/j.minpro.2013.05.008.
  • Amrani, M.; Taha, Y.; Kchikach, A.; Benzaazoua, M.; Hakkou, R. Recycling: New Horizons for a More Sustainable Road Material Application. J. Build. Eng. 2020, 30, 101267. DOI: 10.1016/j.jobe.2020.101267.
  • Chernysh, Y.; Yakhnenko, O.; Chubur, V.; Roubík, H. Phosphogypsum Recycling: A Review of Environmental Issues, Current Trends, and Prospects. Appl. Sci. 2021, 11, 1575. DOI: 10.3390/app11041575.
  • Geraldo, R.-H.; Costa, A.-R.-D.; Kanai, J.; Silva, J.-S.; Souza, J.-D.; Andrade, H.-M.-C.; Gonçalves, J.-P.; Fontanini, P.-S.-P.; Camarini, G. Calcination Parameters on Phosphogypsum Waste Recycling. Constr. Build. Mater. 2020, 256, 119406. DOI: 10.1016/j.conbuildmat.2020.119406.
  • Wu, S.; Yao, X.; Ren, C.; Yao, Y.; Wang, W. Recycling Phosphogypsum as a Sole Calcium Oxide Source in Calcium Sulfoaluminate Cement and Its Environmental Effects. J. Environ. Manage. 2020, 271, 110986. DOI: 10.1016/j.jenvman.2020.110986.
  • Sfar Felfoul, H.; Clastres, P.; Carles-Gibergues, A.; Ben Ouezdou, M. Propriétés et Perspectives D'utilisation du Phosphogypse. L'exemple de la Tunisie. Cim., Bétons, Plâtres, Chaux 2001, 849, 186–191.
  • Murat, M.; Sorrentino, F. Effect of Large Additions of Cd, Pb, Cr, Zn, to Cement Raw Meal on the Composition and the Properties of the Clinker and the Cement. Cem. Concr. Res. 1996, 26, 377–385. DOI: 10.1016/S0008-8846(96)85025-3.
  • Silva, M.-V.; de Rezende, L.-R.; dos Anjos Mascarenha, M.-M.; de Oliveira, R.-B. Phosphogypsum, Tropical Soil and Cement Mixtures for Asphalt Pavements under Wet and Dry Environmental Conditions. Resour. Conserv. Recycl. 2019, 144, 123–136. DOI: 10.1016/j.resconrec.2019.01.029.
  • de Rezende, L.-R.; Curado, T.-D.-S.; Silva, M.-V.; Mascarenha, M.-M.-D.-A.; Metogo, D.-A.-N.; Neto, M.-P.-C.; Bernucci, L.-L.-B. Laboratory Study of Phosphogypsum, Stabilizers, and Tropical Soil Mixtures. J. Mater. Civ. Eng. 2017, 29, 04016188. DOI: 10.1061/(ASCE)MT.1943-5533.0001711.
  • Zeng, L.-L.; Bian, X.; Zhao, L.; Wang, Y.-J.; Hong, Z.-S. Effect of Phosphogypsum on Physiochemical and Mechanical Behaviour of Cement Stabilized Dredged Soil from Fuzhou. China. Geomech. Energy Environ. 2021, 25, 100195. DOI: 10.1016/j.gete.2020.100195.
  • Oumnih, S.; Bekkouch, N.; Gharibi, E.-K.; Fagel, N.; Elhamouti, K.; El Ouahabi, M. Phosphogypsum Waste as Additives to Lime Stabilization of Bentonite. Sustainable Environ. Res. 2019, 29, 1–10. DOI: 10.1186/s42834-019-0038-z.
  • Harrou, A.; Gharibi, E.-K.; Taha, Y.; Fagel, N.; El Ouahabi, M. Phosphogypsum and Black Steel Slag as Additives for Ecological Bentonite-Based Materials: Microstructure and Characterization. Minerals 2020, 10, 1067. DOI: 10.3390/min10121067.
  • Rutherford, P.-M.; Dudas, M.-J.; Arocena, J.-M. Trace Elements and Fluoride in Phosphogypsum Leachates. Environ. Technol. 1995, 16, 343–354. DOI: 10.1080/09593331608616276.
  • Romero-Hermida, M.-I.; Flores-Alés, V.; Hurtado-Bermúdez, S.-J.; Santos, A.; Esquivias, L. Environmental Impact of Phosphogypsum-Derived Building Materials. Int. J. Environ. Res. Public Health 2020, 17, 4248.ijerph DOI: 10.3390/17124248.
  • Xu, P.; Li, H.; Chen, Y. Experimental Study on Optimization of Phosphogypsum Suspension Decomposition Conditions under Double Catalysis. Materials 2021, 14, 1120. DOI: 10.3390/ma14051120.
  • Miao, Z.; Yang, H.; Wu, Y.; Zhang, H.; Zhang, X. Experimental studies on decomposing properties of desulfurization gypsum in a thermogravimetric analyzer and multiatmosphere fluidized beds. Ind. Eng. Chem. Res. 2012, 51(15), 5419–5423 DOI: 10.1021/ie300092s.
  • Bhawan, P.; Nagar, E.-A. Hazardous Waste Management. Ministry of Environment & Forests: Delhi, 2012.
  • Marty, M. Analyses-diagnostics du potentiel de résilience d’une organisation. Doctoral Dissertation. École Polytechnique de Montréal, 2014.
  • Wheelock, T.-D.; Boylan, D.-R. Reductive Decomposition of Gypsum by Carbon Monoxide. Ind. Eng. Chem. 1960, 52, 215–218. DOI: 10.1021/ie50603a023.
  • Zheng, M.; Shen, L.; Feng, X.; Xiao, J. Kinetic Model for Parallel Reactions of CaSO4 with CO in Chemical-Looping Combustion. Ind. Eng. Chem. Res. 2011, 50, 5414–5427. DOI: 10.1021/ie102252z.
  • Kühle, K.-D.; Knösel, K.-R. Process for the production of cement clinker and waste gases containing sulphur dioxide éd: Google Patents, 1988.
  • Yan, B.; Ma, L.; Ma, J.; Zi, Z.; Yan, X. Mechanism Analysis of Ca, S Transformation in Phosphogypsum Decomposition with Fe Catalyst. Ind. Eng. Chem. Res. 2014, 53, 7648–7654. DOI: 10.1021/ie501159y.
  • Wheelock, T.-D. Simultaneous Reductive and Oxidative Decomposition of Calcium Sulfate in the Same Fluidized Bed. U.S. Patent No. 4,102,989. Washington, DC: U.S. Patent and Trademark Office. 1978.
  • Smith, L.-L.; Fortney, M.-L.; Morris, C.-E.; Wheelock, T.-D.; Carrazza, J.-A. Resource Recovery from Wastewater Treatment Sludge Containing Gypsum. In Eleventh National Waste Processing Conference and Exhibit, 1984, p. 19.
  • Nengovhela, R.-N. The Recovery of Sulphur from Waste Gypsum. Doctoral Dissertation, University of Pretoria, Pretoria, 2009.
  • Aagli, A.; Tamer, N.; Atbir, A.; Boukbir, L.; El Hadek, M. Conversion of Phosphogypsum to Potassium Sulfate: Part I. The Effect of Temperature on the Solubility of Calcium Sulfate in Concentrated Aqueous Chloride Solutions. J. Therm. Anal. Calorim. 2005, 82, 395–399. DOI: 10.1007/s10973-005-0908-y.
  • Oumnih, S. Étude de valorisation du phosphogypse par désulfuration et par ajout à la stabilisation des sols gonflants. Doctoral Dissertation, Université Mohammed Premier, Oujda, Maroc and Université de Liège, Liege, Belgique, 2020.
  • Wu, S.-Y.-H.; Tseng, C.-L.; Lin, F.-H. A Newly Developed Fe-Doped Calcium Sulfide Nanoparticles with Magnetic Property for Cancer Hyperthermia. J. Nanopart Res. 2010, 12, 1173–1185. DOI: 10.1007/s11051-009-9734-7.
  • Allen, D.; Hayhurst, A.-N. Reaction between Gaseous Sulfur Dioxide and Solid Calcium Oxide Mechanism and Kinetics. Faraday Trans. 1996, 92, 1227–1238. DOI: 10.1039/ft9969201227.
  • Shobhana, E. Optical Characterization of Calcium Sulphide (CaS) Thin Films by Chemical Bath Deposition. Int. J. Sci. Res. 2015, 4, 1696–1701.
  • Wu, S.-Y.-H.; Yang, K.-C.; Tseng, C.-L.; Chen, J.-C.; Lin, F.-H. Silica-Modified Fe-Doped Calcium Sulfide Nanoparticles for in Vitro and in Vivo Cancer Hyperthermia. J. Nanopart Res. 2011, 13, 1139–1149. DOI: 10.1007/s11051-010-0106-0.
  • Louvain, N.; Fakhry, A.; Bonnet, P.; El-Ghozzi, M.; Guérin, K.; Sougrati, M.-T.; Jumas, J.-C.; Willmann, P. One-Shot versus Stepwise Gas–Solid Synthesis of Iron Trifluoride: Investigation of Pure Molecular F2 Fluorination of Chloride Precursors. CrystEngComm 2013, 15, 3664–3671. DOI: 10.1039/c3ce27033e.
  • Sürer, M.-G.; Arat, H.-T. State of Art of Hydrogen Usage as a Fuel on Aviation. Eur. Mech. Sci. 2017, 2, 20–30. DOI: 10.26701/ems.364286.
  • Odom, J.-M. Industrial and Environmental Activities of Sulfate-Reducing Bacteria. In The Sulfate-Reducing Bacteria: Contemporary Perspectives. New York: Springer-Verlag, 1993. pp. 189–210.
  • Gou, Z.; Chang, J.; Gao, J.; Wang, Z. In Vitro Bioactivity and Dissolution of Ca2(SiO3)(OH)2 and β-Ca2SiO4 Fibers. J. Eur. Ceram. Soc. 2004, 24, 3491–3497. DOI: 10.1016/j.jeurceramsoc.2003.11.023.
  • Petrosyan, A.-M.; Ghazaryan, V.-V.; Fleck, M. On the Infrared Spectrum of L-Lysinium (2+) Sulfate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 2020–2022. DOI: 10.1016/j.saa.2011.04.077
  • Kugel, R.; Taube, H. Infrared Spectrum and Structure of Matrix-Isolated Sulfur Tetroxide. J. Phys. Chem. 1975, 79, 2130–2135. DOI: 10.1021/j100587a014.
  • Naushad, M. Surfactant Assisted Nano-Composite Cation Exchanger: Development, Characterization and Applications for the Removal of Toxic Pb2+ from Aqueous Medium. Chem. Eng. J. 2014, 235, 100–108. DOI: 10.1016/j.cej.2013.09.013.
  • Zhang, G.; Qu, J.; Liu, H.; Liu, R.; Wu, R. Preparation and Evaluation of a Novel Fe-Mn binary oxide adsorbent for effective arsenite removal. Water Res. 2007, 41, 1921–1928. DOI: 10.1016/j.watres.2007.02.009.
  • Qi, Z.; Wang, Y.; He, H.; Li, D.; Xu, X. Wettability Alteration of the Quartz Surface in the Presence of Metal Cations. Energy Fuels 2013, 27, 7354–7359. DOI: 10.1021/ef401928c.
  • Athinarayanan, J.; Jaafari, S.-A.-A.-H.; Periasamy, V.-S.; Almanaa, T.-N.-A.; Alshatwi, A.-A. Fabrication of Biogenic Silica Nanostructures from Sorghum bicolor Leaves for Food Industry Applications. Silicon 2020, 12, 2829–2836. DOI: 10.1007/s12633-020-00379-4.
  • Corno, M.; Busco, C.; Civalleri, B.; Ugliengo, P. Periodic ab Initio Study of Structural and Vibrational Features of Hexagonal Hydroxyapatite Ca10(PO4)6(OH)2. Phys. Chem. Chem. Phys. 2006, 8, 2464–2472. DOI: 10.1039/B602419J.
  • Ulian, G.; Valdrè, G.; Corno, M.; Ugliengo, P. The Vibrational Features of Hydroxylapatite and Type a Carbonated Apatite: A First Principle Contribution. Amer. Miner. 2013, 98, 752–759. DOI: 10.2138/am.2013.4315.
  • Barrett, E.; Fern, G.-R.; Ray, B.; Withnall, R.; Silver, J. UV Photoluminescence from Small Particles of Calcium Cadmium Sulfide Solid Solutions. J. Opt. A: Pure Appl. Opt. 2005, 7, S265–S269. DOI: 10.1088/1464-4258/7/6/002.
  • Sharma, G.; Patil, K.-R.; Gosavi, S.-W. Synthesis and Luminescence of Graphene-Nano Calcium Sulphide Composite. Mater. Chem. Phys. 2014, 147, 57–64. DOI: 10.1016/j.matchemphys.2014.04.006.
  • Castro, M. E.; Rivera, D. U.S. Patent No. 8,945,494. Washington, DC: U.S. Patent and Trademark Office. 2015.
  • Izawa, M.-R.-M.; Applin, D.-M.; Mann, P.; Craig, M.-A.; Cloutis, E.-A.; Helbert, J.; Maturilli, A. Reflectance Spectroscopy (200–2500 nm) of Highly-Reduced Phases under Oxygen-and Water-Free Conditions. Icarus 2013, 226, 1612–1617. DOI: 10.1016/j.icarus.2013.08.014.
  • Nnabuchi, M.-N.; Okeke, C.-E. Characterization of Optimized Grown Calcium Sulphide Thin Films and Their Possible Applications in Solar Energy. Pac. J. Sci. Technol. 2004, 5, 72–82.
  • Li, H.; Zhang, H.; Li, L.; Ren, Q.; Yang, X.; Jiang, Z.; Zhang, Z. Utilization of Low-Quality Desulfurized Ash from Semi-Dry Flue Gas Desulfurization by Mixing with Hemihydrate Gypsum. Fuel 2019, 255, 115783. DOI: 10.1016/j.fuel.2019.115783.
  • Wu, S.; Uddin, M.-A.; Nagamine, S.; Sasaoka, E. Role of Water Vapor in Oxidative Decomposition of Calcium Sulfide. Fuel 2004, 83, 671–677. DOI: 10.1016/j.fuel.2003.10.027.
  • Song, Z.; Zhang, M.; Ma, C. Study on the Oxidation of Calcium Sulfide Using TGA and FTIR. Fuel Process. Technol. 2007, 88, 569–575. DOI: 10.1016/j.fuproc.2007.01.014.
  • Seidel, G.; Huckauf, H.; Stark, J. Technologie des ciments, chaux, plâtre: Processus et installations de cuisson. Éditions SEPTIMA, 1980
  • EPA. Toxic Release Inventory. U.S. Environmental Protection Agency: Washington, 1995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.