83
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A study on the cellular and cytotoxic effects of S and Se heterocycles on the myeloid leukemia cell line PLB-985

ORCID Icon, , & ORCID Icon
Pages 876-884 | Received 07 Feb 2022, Accepted 30 May 2022, Published online: 09 Jun 2022

References

  • Toogood, P. L. Mitochondrial Drugs. Curr. Opin. Chem. Biol. 2008, 12, 457–463. DOI: 10.1016/j.cbpa.2008.06.002.
  • Adam-Vizi, V.; Chinopoulos, C. Bioenergetics and the Formation of Mitochondrial Reactive Oxygen Species. Trends Pharmacol. Sci. 2006, 27, 639–645. DOI: 10.1016/j.tips.2006.10.005.
  • Scatena, R. Mitochondria and Drugs. Adv. Exp. Med. Biol. 2012, 942, 329–346.
  • Zaidieh, T.; Smith, J. R.; Ball, K. E.; An, Q. ROS as a Novel Indicator to Predict Anticancer Drug Efficacy. BMC Cancer 2019, 19, 1224. DOI: 10.1186/s12885-019-6438-y.
  • Chinopoulos, C.; Vizi, V. A. Mitochondria Deficient in Complex I Activity Are Depolarized by Hydrogen Peroxide in Nerve Terminals: Relevance to Parkinson's disease. J. Neurochem. 2001, 76, 302–306. DOI: 10.1046/j.1471-4159.2001.00060.x.
  • Starkov, A. A. The Role of Mitochondria in Reactive Oxygen Species Metabolism and Signaling. Ann. N. Y. Acad. Sci. 2008, 1147, 37–52. DOI: 10.1196/annals.1427.015.
  • Georgieva, E.; Ivanova, D.; Zhelev, Z.; Bakalova, R.; Gulubova, M.; Aoki, I. Mitochondrial Dysfunction and Redox Imbalance as a Diagnostic Marker of “Free Radical Diseases". Anticancer Res. 2017, 37, 5373–5381. DOI: 10.21873/anticanres.11963.
  • Guo, Z.; Jin, C.; Yao, Z.; Wang, Y. M.; Xu, B. T. Analysis of the Mitochondrial 4977 Bp Deletion in Patients with Hepatocellular Carcinoma. Balkan. J. Med. Genet. 2017, 20, 81–86.
  • Idelchik, M. D. P. S.; Begley, U.; Begley, T. J.; Melendez, J. A. Mitochondrial ROS Control of Cancer. Semin. Cancer Biol. 2017, 47, 57–66. DOI: 10.1016/j.semcancer.2017.04.005.
  • Shah, R.; Verma, P. K. Therapeutic Importance of Synthetic Thiophene. Chem. Cent. J. 2018, 12, 137. DOI: 10.1186/s13065-018-0511-5.
  • Keri, R. S.; Chand, K.; Budagumpi, S.; Balappa Somappa, S.; Patil, S. A.; Nagaraja, B. M. An Overview of Benzo[b]thiophene-Based Medicinal Chemistry. Eur. J. Med. Chem. 2017, 138, 1002–1033. DOI: 10.1016/j.ejmech.2017.07.038.
  • Janosik, T.; Bergman, J. Chapter 5.1: Five-Membered Ring Systems: Thiophenes and Se/Te Analogs. Prog. Heterocycl. Chem. 2009, 20, 94–121.
  • Ruberte, A. C.; Sanmartin, C.; Aydillo, C.; Sharma, A. K.; Plano, D. Development and Therapeutic Potential of Selenazo Compounds. J. Med. Chem. 2020, 63, 1473–1489. DOI: 10.1021/acs.jmedchem.9b01152.
  • Hou, W.; Xu, H. Incorporating Selenium into Heterocycles and Natural Products—From Chemical Properties to Pharmacological Activities. J. Med. Chem. 2022, 65, 4436–4456. DOI: 10.1021/acs.jmedchem.1c01859.
  • Wiles, J. A.; Phadke, A. S.; Bradbury, B. J.; Pucci, M. J.; Thanassi, J. A.; Deshpande, M. Selenophene-Containing Inhibitors of Type IIA Bacterial Topoisomerases. J. Med. Chem. 2011, 54, 3418–3425. DOI: 10.1021/jm2002124.
  • Abdel-Hafez, S. Selenium-Containing Heterocycles. Synthesis and Reactions of 2-Amino-4,5,6,7-Tetrahydro-1-Benzoselenophene-3-Carbonitrile with Anticipated Biological Activity. Russ. J. Org. Chem. 2005, 41, 396–401. DOI: 10.1007/s11178-005-0177-z.
  • Desai, N. C.; Rupala, Y. M.; Khasiya, A. G.; Shah, K. N.; Pandit, U. P.; Khedkar, V. M. Synthesis, Biological Evaluation, and Molecular Docking Study of Thiophene‐, Piperazine‐, and Thiazolidinone‐Based Hybrids as Potential Antimicrobial Agents. J. Heterocycl. Chem. 2021, 59.
  • Mishra, R.; Kumar, N.; Mishra, I.; Sachan, N. A Review on Anticancer Activities of Thiophene and Its Analogs. Mini Rev. Med. Chem. 2020, 20, 1944–1965. DOI: 10.2174/1389557520666200715104555.
  • Raghavendra, K. R.; Sudeep, P.; Kumar, K. A.; Jayadevappa, H. P. An Efficient Synthesis of Thiophene Conjugated Benzothiazepines: In Vitro Screening for Their Antimicrobial Activity. Asian J. Chem. 2020, 32, 2601–2605. DOI: 10.14233/ajchem.2020.22861.
  • Akolkar, H. N.; Dengale, S. G.; Deshmukh, K. K.; Karale, B. K.; Darekar, N. R.; Khedkar, V. M.; Shaikh, M. H. Design, Synthesis and Biological Evaluation of Novel Furan & Thiophene Containing Pyrazolyl Pyrazolines as Antimalarial Agents. Polycycl. Arom. Comp. 2020, 1–13. DOI: 10.1080/10406638.2020.1821231.
  • Thotla, K.; Noole, V.; Reddy, C. K. Synthesis and Antimicrobial Activity of a Novel Hybrid Benzo[b]thiophene-1,2,3-Triazole Analogues. Chem. Data Collect. 2020, 27, 100361. DOI: 10.1016/j.cdc.2020.100361.
  • Naganagowda, G.; Thamyongkit, P.; Klai-U-dom, R.; Ariyakriangkrai, W.; Luechai, A.; Petsom, A. Synthesis and Biological Activity of Some More Heterocyclic Compounds Containing Benzothiophene Moiety. J. Sulfur Chem. 2011, 32, 235–247. DOI: 10.1080/17415993.2011.583394.
  • Varpe, B. D.; Jadhav, S. B. Schiff Base Conjugate of 5-Fluoroisatin with Thiophene-2-Ethylamine and Its Mannich Bases: Synthesis, Molecular Docking, and Evaluation of in Vitro Anti-Inflammatory and Anti-Tubercular Activity. JPHI 2021, 11, 189–194. DOI: 10.5530/ijpi.2021.2.34.
  • Cruz, R. D.; Mendonça-Junior, F. J. B.; de Mélo, N. B.; Scotti, L.; de Araújo, R. S. A.; de Almeida, R. N.; de Moura, R. O. Thiophene-Based Compounds with Potential Anti-Inflammatory Activity. Pharmaceuticals 2021, 14, 692.
  • Nayak, S. G.; Poojary, B.; Kamat, V. Novel Pyrazole‐Clubbed Thiophene Derivatives via Gewald Synthesis as Antibacterial and Anti‐Inflammatory Agents. Arch. Pharm. 2020, 353, 2000103. DOI: 10.1002/ardp.202000103.
  • Qandeel, N. A.; El-Damasy, A. K.; Sharawy, M. H.; Bayomi, S. M.; El-Gohary, N. S. Synthesis, in Vivo Anti-Inflammatory, COX-1/COX-2 and 5-LOX Inhibitory Activities of New 2,3,4-Trisubstituted Thiophene Derivatives. Bioorg. Chem. 2020, 102, 103890. DOI: 10.1016/j.bioorg.2020.103890.
  • John, J.; Koshy, S. K. G. Current Oral Antiplatelets: Focus Update on Prasugrel. J. Am. Board Fam. Med. 2012, 25, 343–349.
  • Asai, F.; Ito, T.; Ushiyama, S.; Matsuda, K.; Oshima, T. In Vitro Antiplatelet Profiles of the New Thromboxane Synthetase Inhibitor Sodium 2-(1-Imidazolylmethyl)-4,5-Dihydrobenzo[b]thiophene-6-Carboxylate. Arznei-forschung 1991, 41, 506–510.
  • Court, J. J.; Poisson, C.; Ardzinski, A.; Bilimoria, D.; Chan, L.; Chandupatla, K.; Chauret, N.; Collier, P. N.; Das, S. K.; Denis, F.; et al. Discovery of Novel Thiophene-Based, Thumb Pocket 2 Allosteric Inhibitors of the Hepatitis C NS5B Polymerase with Improved Potency and Physicochemical Profiles. J. Med. Chem. 2016, 59, 6293–6302. DOI: 10.1021/acs.jmedchem.6b00541.
  • Hudson, J.; Graham, E.; Chan, G.; Finlayson, A.; Towers, G. Comparison of the Antiviral Effects of Naturally Occurring Thiophenes and Polyacetylenes. Planta Med. 1986, 52, 453–457. DOI: 10.1055/s-2007-969252.
  • Wang, Z.; Kang, D.; Chen, M.; Wu, G.; Feng, D.; Zhao, T.; Zhou, Z.; Huo, Z.; Jing, L.; Zuo, X.; et al. Design, Synthesis, and Antiviral Evaluation of Novel Hydrazone-Substituted Thiophene[3,2-d]pyrimidine Derivatives as Potent Human Immunodeficiency Virus-1 Inhibitors. Chem. Biol. Drug Des. 2018, 92, 2009–2021. DOI: 10.1111/cbdd.13373.
  • Radomska, D.; Czarnomysy, R.; Radomski, D.; Bielawski, K. Selenium Compounds as Novel Potential Anticancer Agents. Int. J. Mol. Sci. 2021, 22, 1009. DOI: 10.3390/ijms22031009.
  • Karaman, O.; Almammadov, T.; Emre Gedik, M.; Gunaydin, G.; Kolemen, S.; Gunbas, G. Mitochondria‐Targeting Selenophene‐Modified BODIPY‐Based Photosensitizers for the Treatment of Hypoxic Cancer Cells. ChemMedChem 2019, 14, 1879–1886.
  • Luo, J.; Hu, Z.; Xiao, Y.; Yang, T.; Dong, C.; Huang, J.; Zhou, H.-B. Rational Design and Optimization of Selenophenes with Basic Side Chains as Novel Potent Selective Estrogen Receptor Modulators (SERMs) for Breast Cancer Therapy. MedChemComm 2017, 8, 1485–1497. DOI: 10.1039/c7md00163k.
  • Bai, C.; Ren, S.; Wu, S.; Zhu, M.; Luo, G.; Xiang, H. Design and Synthesis of Novel Benzothiophene Analogs as Selective Estrogen Receptor Covalent Antagonists against Breast Cancer. Eur. J. Med. Chem. 2021, 221, 113543. DOI: 10.1016/j.ejmech.2021.113543.
  • Anbar, H. S.; El-Gamal, R.; Ullah, S.; Zaraei, S.-O.; Al-Rashida, M.; Zaib, S.; Pelletier, J.; Sévigny, J.; Iqbal, J.; El-Gamal, M. I.; et al. Evaluation of Sulfonate and Sulfamate Derivatives Possessing Benzofuran or Benzothiophene Nucleus as Inhibitors of Nucleotide Pyrophosphatases/Phosphodiesterases and Anticancer Agents. Bioorg. Chem. 2020, 104, 104305. DOI: 10.1016/j.bioorg.2020.104305.
  • Cai, G.; Yu, W.; Song, D.; Zhang, W.; Guo, J.; Zhu, J.; Ren, Y.; Kong, L. Discovery of Fluorescent Coumarin-Benzo[b]thiophene 1, 1-Dioxide Conjugates as Mitochondria-Targeting Antitumor STAT3 Inhibitors. Eur. J. Med. Chem. 2019, 174, 236–251. DOI: 10.1016/j.ejmech.2019.04.024.
  • El-Sharkawy, K. Uses of 2-Amino-5,6-Dihydro-4H-Cyclopenta [b] Thiophene-3-Carbonitrile in the Synthesis of Heterocyclic Compounds with Anticonvulsant, Behavioral and CNS Antidepressant Activities. IRJPAC 2012, 2, 91–104. DOI: 10.9734/IRJPAC/2012/1222.
  • Berrade, L.; Aisa, B.; Ramirez, M. J.; Galiano, S.; Guccione, S.; Moltzau, L. R.; Levy, F. O.; Nicoletti, F.; Battaglia, G.; Molinaro, G.; et al. Novel Benzo[b]thiophene Derivatives as New Potential Antidepressants with Rapid Onset of Action. J. Med. Chem. 2011, 54, 3086–3090. DOI: 10.1021/jm2000773.
  • Amr, A. E.-G. E.; Sherif, M. H.; Assy, M. G.; Al-Omar, M. A.; Ragab, I. Antiarrhythmic, Serotonin Antagonist and Antianxiety Activities of Novel Substituted Thiophene Derivatives Synthesized from 2-Amino-4,5,6,7-Tetrahydro-N-Phenylbenzo[b]thiophene-3-Carboxamide. Eur. J. Med. Chem. 2010, 45, 5935–5942. DOI: 10.1016/j.ejmech.2010.09.059.
  • Gai, B. M.; Sanna, M. D.; Stein, A. L.; Zeni, G.; Galeotti, N.; Nogueira, C. W. ERK1/2 Phosphorylation Is Involved in the Antidepressant-Like Action of 2,5-Diphenyl-3-(4-Fluorophenylseleno)-Selenophene in Mice. Eur. J. Pharmacol. 2014, 736, 44–54. DOI: 10.1016/j.ejphar.2014.04.033.
  • Gai, B. M.; Stein, A. L.; Roehrs, J. A.; Bilheri, F. N.; Nogueira, C. W.; Zeni, G. Synthesis and Antidepressant-Like Activity of Selenophenes Obtained via Iron(III)-PhSeSePh-Mediated Cyclization of Z-Selenoenynes. Org. Biomol. Chem. 2012, 10, 798–807. DOI: 10.1039/c1ob06548c.
  • Gay, B. M.; Prigol, M.; Stein, A. L.; Nogueira, C. W. Antidepressant-Like Pharmacological Profile of 3-(4-Fluorophenylselenyl)-2,5-Diphenylselenophene: Involvement of Serotonergic System. Neuropharmacology 2010, 59, 172–179. DOI: 10.1016/j.neuropharm.2010.05.003.
  • Elsherbini, M.; Hamama, W. S.; Zoorob, H. H. An Easy Synthetic Approach to Construct Some Ebselen Analogues and Benzo[b]Selenophene Derivatives: Their Antioxidant and Cytotoxic Assessment. J. Heterocyclic Chem. 2018, 55, 1645–1650. DOI: 10.1002/jhet.3199.
  • Tanini, D.; Panzella, L.; Amorati, R.; Capperucci, A.; Pizzo, E.; Napolitano, A.; Menichetti, S.; d'Ischia, M. Resveratrol-Based Benzoselenophenes with an Enhanced Antioxidant and Chain Breaking Capacity. Org. Biomol. Chem. 2015, 13, 5757–5764. DOI: 10.1039/c5ob00193e.
  • Mishra, R.; Kumar, N.; Sachan, N. Thiophene and Its Analogs as Prospective Antioxidant Agents: A Retrospect. Mini Rev. Med. Chem. 2021, 21, 1420–1437.
  • Rosada, B.; Bekier, A.; Cytarska, J.; Płaziński, W.; Zavyalova, O.; Sikora, A.; Dzitko, K.; Łączkowski, K. Z. Benzo[b]thiophene-Thiazoles as Potent Anti-Toxoplasma gondii Agents: Design, Synthesis, Tyrosinase/Tyrosine Hydroxylase Inhibitors, Molecular Docking Study, and Antioxidant Activity. Eur. J. Med. Chem. 2019, 184, 111765. DOI: 10.1016/j.ejmech.2019.111765.
  • Pawar, C. D.; Pansare, D. N.; Shinde, D. B. (Substituted)-Benzo[b]thiophene-4-Carboxamide Synthesis and Antiproliferative Activity Study. LDDD 2020, 17, 563–573. DOI: 10.2174/1570180815666181004114125.
  • Ali, W.; Spengler, G.; Kincses, A.; Nové, M.; Battistelli, C.; Latacz, G.; Starek, M.; Dąbrowska, M.; Honkisz-Orzechowska, E.; Romanelli, A.; et al. Discovery of Phenylselenoether-Hydantoin Hybrids as ABCB1 Efflux Pump Modulating Agents with Cytotoxic and Antiproliferative Actions in Resistant T-Lymphoma. Eur. J. Med. Chem. 2020, 200, 112435. DOI: 10.1016/j.ejmech.2020.112435.
  • Erben, F.; Kleeblatt, D.; Sonneck, M.; Hein, M.; Feist, H.; Fahrenwaldt, T.; Fischer, C.; Matin, A.; Iqbal, J.; Plötz, M.; et al. Synthesis and Antiproliferative Activity of Selenoindirubins and Selenoindirubin-N-Glycosides. Org. Biomol. Chem. 2013, 11, 3963–3978. DOI: 10.1039/c3ob40603b.
  • Franchetti, P.; Cappellacci, L.; Sheikha, G. A.; Jayaram, H. N.; Gurudutt, V. V.; Sint, T.; Schneider, B. P.; Jones, W. D.; Goldstein, B. M.; Perra, G.; et al. Synthesis, Structure, and Antiproliferative Activity of Selenophenfurin, an Inosine 5'-Monophosphate Dehydrogenase Inhibitor Analogue of Selenazofurin. J. Med. Chem. 1997, 40, 1731–1737. DOI: 10.1021/jm960864o.
  • Xu, Z.; Yang, Z.; Liu, Y.; Lu, Y.; Chen, K.; Zhu, W. Halogen Bond: Its Role Beyond Drug-Target Binding Affinity for Drug Discovery and Development. J. Chem. Inf. Model. 2014, 54, 69–78. DOI: 10.1021/ci400539q.
  • Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. Applications of Fluorine in Medicinal Chemistry. J. Med. Chem. 2015, 58, 8315–8359. DOI: 10.1021/acs.jmedchem.5b00258.
  • Pathania, S.; Narang, R. K.; Rawal, R. K. Role of Sulphur-Heterocycles in Medicinal Chemistry: An Update. Eur. J. Med. Chem. 2019, 180, 486–508. DOI: 10.1016/j.ejmech.2019.07.043.
  • Tavadyan, L.; Manukyan, Z.; Harutyunyan, L.; Musayelyan, M.; Sahakyan, A.; Tonikyan, H. Antioxidant Properties of Selenophene, Thiophene and Their Aminocarbonitrile Derivatives. Antioxidants 2017, 6, 22. DOI: 10.3390/antiox6020022.
  • Zhao, M.; Cui, Y.; Zhao, L.; Zhu, T.; Lee, R. J.; Liao, W.; Sun, F.; Li, Y.; Teng, L. Thiophene Derivatives as New Anticancer Agents and Their Therapeutic Delivery Using Folate Receptor-Targeting Nanocarriers. ACS Omega 2019, 4, 8874–8880. DOI: 10.1021/acsomega.9b00554.
  • Gliyazova, N. S.; Huh, E. Y.; Ibeanu, G. C. A Novel Phenoxy Thiophene Sulphonamide Molecule Protects against Glutamate Evoked Oxidative Injury in a Neuronal Cell Model. BMC Neurosci. 2013, 14, 93. DOI: 10.1186/1471-2202-14-93.
  • Schumacher, R. F.; Rosário, A. R.; Souza, A. C.; Acker, C. I.; Nogueira, C. W.; Zeni, G. The Potential Antioxidant Activity of 2,3-Dihydroselenophene, a Prototype Drug of 4-Aryl-2,3-Dihydroselenophenes. Bioorg. Med. Chem. 2011, 19, 1418–1425. DOI: 10.1016/j.bmc.2011.01.005.
  • Akatsuka, A.; Kojima, N.; Okamura, M.; et al. A Novel Thiophene‐3‐Carboxamide Analog of Annonaceous Acetogenin Exhibits Antitumor Activity via Inhibition of Mitochondrial Complex I. Pharmacol. Res. Perspectives 2016, 4, e00246.
  • Neto, L. d. A.; Lima, M. d. C. d.; Oliveira, J. d.; de Souza, E. R.; Machado, S. E. F.; de Souza Lima, G. M.; Buonafina, M. D. S.; Brayner, F. A.; Alves, L. C.; Sandes, J. M.; et al. Thiophene-Thiosemicarbazone Derivative (L10) Exerts Antifungal Activity Mediated by Oxidative Stress and Apoptosis in C. albicans. Chem-Biol Interact 2020, 320, 109028.
  • Lu, Y.; Liu, Y.; Xu, Z.; Li, H.; Liu, H.; Zhu, W. Halogen Bonding for Rational Drug Design and New Drug Discovery. Expert Opin. Drug Dis. 2012, 7, 375–383. DOI: 10.1517/17460441.2012.678829.
  • Mendez, L.; Henriquez, G.; Sirimulla, S.; Narayan, M. Looking Back, Looking Forward at Halogen Bonding in Drug Discovery. Mol. J. Synth. Chem. Nat. Prod. Chem. 2017, 22, 1397.
  • Tucker, K. A.; Lilly, M. B.; Heck, L.; Rado, T. A. Characterization of a New Human Diploid Myeloid Leukemia Cell Line (PLB-985) with Granulocytic and Monocytic Differentiating Capacity. Blood 1987, 70, 372–378.
  • Shiah, H.-S.; Lee, W.-S.; Juang, S.-H.; Hong, P.-C.; Lung, C.-C.; Chang, C.-J.; Chou, K.-M.; Chang, J.-Y. Mitochondria-Mediated and p53-Associated Apoptosis Induced in Human Cancer Cells by a Novel Selenophene Derivative, D-501036. Biochem. Pharmacol. 2007, 73, 610–619. DOI: 10.1016/j.bcp.2006.10.019.
  • Mori, F.; Tanji, K.; Wakabayashi, K. Thiophene, a Sulfur-Containing Heterocyclic Hydrocarbon, Causes Widespread Neuronal Degeneration in Rats. Neuropathology 2008, 20, 283–288.
  • Wishart, D. S.; Feunang, Y. D.; Guo, A. C.; Lo, E. J.; Marcu, A.; Grant, J. R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. DOI: 10.1093/nar/gkx1037.
  • Law, V.; Knox, C.; Djoumbou, Y.; Jewison, T.; Guo, A. C.; Liu, Y.; Maciejewski, A.; Arndt, D.; Wilson, M.; Neveu, V.; et al. DrugBank 4.0: Shedding New Light on Drug Metabolism. Nucleic Acids Res. 2014, 42, D1091–D1097. DOI: 10.1093/nar/gkt1068.
  • Kesharwani, T.; Giraudy, K. A.; Morgan, J. L.; Kornman, C.; Olaitan, A. D. Green Synthesis of Halogenated Thiophenes, Selenophenes and Benzo[b]selenophenes Using Sodium Halides as a Source of Electrophilic Halogens. Tetrahedron Lett. 2017, 58, 638–641. DOI: 10.1016/j.tetlet.2017.01.007.
  • Kim, S.; Dahal, N.; Kesharwani, T. Environmentally Benign Process for the Synthesis of 2,3-Disubstituted Benzo[b]thiophenes Using Electrophilic Cyclization. Tetrahedron Lett. 2013, 54, 4373–4376. DOI: 10.1016/j.tetlet.2013.05.139.
  • Auten, R. L.; Davis, J. M. Oxygen Toxicity and Reactive Oxygen Species: The Devil is in the Details. Pediatr. Res. 2009, 66, 121–127. DOI: 10.1203/PDR.0b013e3181a9eafb.
  • Krampe, B.; Al-Rubeai, M. Cell Death in Mammalian Cell Culture: Molecular Mechanisms and Cell Line Engineering Strategies. Cytotechnology 2010, 62, 175–188. DOI: 10.1007/s10616-010-9274-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.