311
Views
1
CrossRef citations to date
0
Altmetric
Review

Synthetic methodologies for the construction of selenium-containing heterocycles: a review

, ORCID Icon, ORCID Icon, , &
Pages 1096-1122 | Received 19 Apr 2022, Accepted 10 Jun 2022, Published online: 12 Jul 2022

References

  • Lenz, M.; Lens, P. N. The Essential Toxin: The Changing Perception of Selenium in Environmental Sciences. Sci. Total Environ. 2009, 407, 3620–3633. DOI: 10.1016/j.scitotenv.2008.07.056.
  • Fouda, A. M.; Assiri, M. A.; Ali, T. E. Facile Synthesis of Some New Functionalized 2-Selenoxopyrimidines. Phosphorus Sulf. Silicon Relat. Element. 2020, 195, 324–330. DOI: 10.1080/10426507.2019.1694023.
  • Braga, A. L.; Severo Filho, W. A.; Schwab, R. S.; Rodrigues, O. E.; Dornelles, L.; Braga, H. C.; Ludtke, D. S. Synthesis of Selenium-and Tellurium-Containing Nucleosides Derived from Uridine. Tetrahedron. Lett. 2009, 50, 3005–3007. DOI: 10.1016/j.tetlet.2009.03.164.
  • Litvinov, V. P.; Dyachenko, V. D. Selenium-Containing Heterocycles. Russ. Chem. Rev. 1997, 66, 923–951. DOI: 10.1070/RC1997v066n11ABEH000323/meta.
  • Ninomiya, M.; Garud, D. R.; Koketsu, M. Biologically Significant Selenium-Containing Heterocycles. Coordin. Chem. Rev. 2011, 255, 2968–2990. DOI: 10.1016/j.ccr.2011.07.009.
  • Atanassov, P. K.; Linden, A.; Heimgartner, H. Synthesis of 4‐(Phenylamino)Quinazoline-2(1H)‐Selones and Diselenides from Isoselenocyanates: Dimroth Rearrangement of an Intermediate. Helvetica Chim. Acta 2004, 87, 1873–1887. DOI: 10.1002/hlca.200490166.
  • Madhav, B.; Murthy, S. N.; Kumar, B. A.; Ramesh, K.; Nageswar, Y. V. D. A Tandem One-Pot Aqueous Phase Synthesis of Thiazoles/Selenazoles. Tetrahedron. Lett. 2012, 53, 3835–3838. DOI: 10.1016/j.tetlet.2012.04.097.
  • Sonawane, A. D.; Sonawane, R. A.; Ninomiya, M.; Koketsu, M. Synthesis of Seleno‐Heterocycles via Electrophilic/Radical Cyclization of Alkyne Containing Heteroatoms. Adv. Synth. Catal. 2020, 362, 3485–3515. DOI: 10.1002/adsc.202000490.
  • Scheide, M. R.; Schneider, A. R.; Jardim, G. A.; Martins, G. M.; Durigon, D. C.; Saba, S.; Rafique, J.; Braga, A. L. Electrochemical Synthesis of Selenyl-Dihydrofurans via Anodic Selenofunctionalization of Allyl-Naphthol/Phenol Derivatives and Their anti-Alzheimer Activity. Org. Biomol. Chem. 2020, 18, 4916–4921. DOI: 10.1039/D0OB00629G.
  • Press, D. J.; McNeil, N. M.; Hambrook, M.; Back, T. G. Effects of Methoxy Substituents on the Glutathione Peroxidase-like Activity of Cyclic Seleninate Esters. J. Org. Chem. 2014, 79, 9394–9401. DOI: 10.1021/jo501689h.
  • Sheikhi-Mohammareh, S.; Shiri, A.; Mague, J. Dimroth Rearrangement-Based Synthesis of Novel Derivatives of [1,3]Selenazolo[5,4-e][1,2,4]Triazolo[1,5-c]Pyrimidine as a New Class of Selenium-Containing Heterocyclic Architecture. Mol. Divers 2021, 26, 923–937. DOI: 10.1007/s11030-021-10203-9.
  • Musalov, M. V.; Yakimov, V. A.; Potapov, V. A.; Amosova, S. V.; Zinchenko, S. V. Synthesis of Functionalized Diorganyl Selenides from Selenium Dihalides and Allylic Aromatic Compounds. Russ. J. Org. Chem. 2019, 55, 1153–1159. DOI: 10.1134/S1070428019080141.
  • Goldstein, B. M.; Kennedy, S. D.; Hennen, W. J. Selenium-77 NMR and Crystallographic Studies of Selenazofurin and Its 5-Amino Derivative. J. Am. Chem. Soc. 1990, 112, 8265–8268. DOI: 10.1021/ja00179a007.
  • Musalov, M. V.; Potapov, V. A.; Amosova, S. V. Efficient Synthesis of a New Family of 2,6-Disulfanyl-9-Selenabicyclo[3.3.1]Nonanes. Molecules 2021, 26, 2849. DOI: 10.3390/molecules26102849.
  • Puthran, D.; Poojary, B.; Nayak, S. G.; Purushotham, N.; Rasheed, M. S.; Hegde, H. Design, Synthesis, Molecular Docking, and Biological Evaluation of Novel Selenium Containing Lumefantrine Analogues. J. Heterocyclic. Chem. 2020, 57, 1319–1329. DOI: 10.1002/jhet.3868.
  • Woods, J. A.; Hadfield, J. A.; McGown, A. T.; Fox, B. W. Bioactivity and Molecular Modelling of Diphenylsulfides and Diphenylselenides. Bioorg. Med. Chem. 1993, 1, 333–340. DOI: 10.1016/s0968-0896(00)82139-2.
  • Ashour, O. M.; Al Safarjalani, O. N.; Naguib, F. N.; Goudgaon, N. M.; Schinazi, R. F.; el Kouni, M. H. Modulation of Plasma Uridine Concentration by 5-(Phenylselenenyl) Acyclouridine, an Inhibitor of Uridine Phosphorylase: Relevance to Chemotherapy. Cancer Chemother. Pharmacol. 2000, 45, 351–361. DOI: 10.1007/s002800051002.
  • Zhao, L.; Li, J.; Li, Y.; Liu, J.; Wirth, T.; Li, Z. Selenium-Containing Naphthalimides as Anticancer Agents: Design, Synthesis and Bioactivity. Bioorg. Med. Chem. 2012, 20, 2558–2563. DOI: 10.1016/j.bmc.2012.02.049.
  • Roy, G.; Nethaji, M.; Mugesh, G. Biomimetic Studies on Anti-Thyroid Drugs and Thyroid Hormone Synthesis. J. Am. Chem. Soc. 2004, 126, 2712–2713. DOI: 10.1021/ja039860g.
  • Battin, E. E.; Perron, N. R.; Brumaghim, J. L. The Central Role of Metal Coordination in Selenium Antioxidant Activity. Inorg. Chem. 2006, 45, 499–501. DOI: 10.1021/ic051594f.
  • Bhabak, K. P.; Mugesh, G. Functional Mimics of Glutathione Peroxidase: Bioinspired Synthetic Antioxidants. ACC Chem. Res. 2010, 43, 1408–1419. DOI: 10.1021/ar100059g.
  • Van Haperen, R.; Samyn, H.; Moerland, M.; Van Gent, T.; Peeters, M.; Grosveld, F.; Van Tol, A.; de Crom, R. Elevated Expression of Phospholipid Transfer Protein in Bone Marrow Derived Cells Causes Atherosclerosis. PLoS One 2008, 3, e2255. DOI: 10.1371/journal.pone.0002255.
  • Lie, J.; Moerland, M.; van Gent, T.; van Haperen, R.; Scheek, L.; Sadeghi-Niaraki, F.; de Crom, R.; van Tol, A. Sex Differences in Atherosclerosis in Mice with Elevated Phospholipid Transfer Protein Activity Are Related to Decreased Plasma High Density Lipoproteins and Not to Increased Production of Triglycerides. Biochim. Biophys. Acta 2006, 1761, 1070–1077. DOI: 10.1016/j.bbalip.2006.06.013.
  • Ling, C.; Zheng, Z.; Jiang, X. C.; Zhong, W.; Li, S. Synthesis of a Series of Novel 2, 4, 5-Trisubstituted Selenazole Compounds as Potential PLTP Inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 5123–5125. DOI: 10.1016/j.bmcl.2010.07.017.
  • Fujiwara, S. I.; Asanuma, Y.; Shin-ike, T.; Kambe, N. Copper(I)-Catalyzed Highly Efficient Synthesis of Benzoselenazoles and Benzotellurazoles. J. Org. Chem. 2007, 72, 8087–8090. DOI. DOI: 10.1021/jo7013164.
  • Kobayashi, K.; Yokoi, Y. A Convenient Synthesis of 2‐Sulfanylbenzoselenazole Derivatives via the Reaction of 2‐Lithiophenyl Isothiocyanates with Selenium. Helvetica Chim. Acta 2012, 95, 761–765. DOI: 10.1002/hlca.201200014.
  • Girma, W. M.; Tzing, S. H.; Tseng, P. J.; Huang, C. C.; Ling, Y. C.; Chang, J. Y. Synthesis of Cisplatin (IV) Prodrug-Tethered CuFeS2 Nanoparticles in Tumor-Targeted Chemotherapy and Photothermal Therapy. ACS Appl. Mater. Interfaces 2018, 10, 4590–4602. DOI: 10.1021/acsami.7b19640.
  • Zhou, M.; Ji, S.; Wu, Z.; Li, Y.; Zheng, W.; Zhou, H.; Chen, T. Synthesis of Selenazolopyridine Derivatives with Capability to Induce Apoptosis in Human Breast Carcinoma MCF-7 Cells through Scavenge of Intracellular ROS. Eur. J. Med. Chem. 2015, 96, 92–97. DOI: 10.1016/j.ejmech.2015.03.069.
  • Ahn, H. J.; Koketsu, M.; Yang, E. M.; Kim, Y. M.; Ishihara, H.; Yang, H. O. 2‐(4‐Methylphenyl)‐1,3‐Selenazol‐4‐One Induces Apoptosis by Different Mechanisms in SKOV3 and HL 60 Cells. J. Cell Biochem. 2006, 99, 807–815. DOI: 10.1002/jcb.20973.
  • Takahashi, H.; Nishina, A.; Kimura, H.; Motoki, K.; Koketsu, M.; Ishihara, H. Tertiary Selenoamide Compounds Are Useful Superoxide Radical Scavengers in Vitro. Eur. J. Pharm. Sci. 2004, 23, 207–211. DOI: 10.1016/j.ejps.2004.04.011.
  • Pizzo, C.; Mahler, S. G. Synthesis of Selenazoles by in Situ Cycloisomerization of Propargyl Selenoamides Using Oxygen–Selenium Exchange Reaction. J. Org. Chem. 2014, 79, 1856–1860. DOI: 10.1021/jo402661b.
  • Mohr, F. Old Selenium Heterocycles Revisited: Synthesis, Spectroscopic and Structural Characterization of N‐Acyl‐1,3‐Selenazol‐. 2(3H)‐Imines and 5‐Acyl‐1,3‐Selenazol‐2‐Amines from Acylselenourea Derivatives. J. Heterocyclic. Chem. 2014, 51, 1435–1441. DOI: 10.1002/jhet.1935.
  • Chen, W.; Zhu, X.; Wang, F.; Yang, Y.; Deng, G.; Liang, Y. Iodine-Catalyzed Three-Component Cascade Reaction for the Synthesis of Substituted 2-Phenylnaphtho[1,3]Selenazoles under Transition-Metal-Free Conditions. J. Org. Chem. 2020, 85, 3349–3357. DOI: 10.1021/acs.joc.9b03154.
  • Su, T.; Xie, S.; Li, B.; Yan, J.; Huang, L.; Li, X. Copper-Catalyzed Three-Component One-Pot Synthesis of Substituted 2-Aryl-1,3-Benzoselenazoles. Synlett 2014, 26, 215–220. DOI: 10.1055/s-0034-1378934.
  • Dolbier, W. R.; Jr, Ait-Mohand, S.; Schertz, T. D.; Sergeeva, T. A.; Cradlebaugh, J. A.; Mitani, A.; L Gard, G. L.; Winter, R. W.; Thrasher, J. S. A Convenient and Efficient Method for Incorporation of Pentafluorosulfanyl (SF5) Substituents into Aliphatic Compounds. J. Fluorine Chem. 2006, 127, 1302–1310. DOI: 10.1016/j.jfluchem.2006.05.003.
  • Hua, G.; Du, J.; Slawin, A. M.; Woollins, J. D. 2,4-Diaryl-1,3-Chalcogenoazoles Bearing Pentafluorosulfanyl SF5 Groups: A Synthetic and Structural Study. J. Org. Chem. 2014, 79, 3876–3886. DOI: 10.1021/jo500316v.
  • Zav’yalov, S. I.; Kravchenko, N. E.; Ezhova, G. I.; Kulikova, L. B.; Zavozin, A. G.; Dorofeeva, O. V. Synthesis of 2-Aminothiazole Derivatives. Pharm. Chem. J. 2007, 41, 105–108. DOI: 10.1007/s11094-007-0023-4.
  • Wang, Y.; Zhang, W. X.; Wang, Z.; Xi, Z. Procedure‐Controlled Selective Synthesis of 5‐Acyl‐2‐Iminothiazolines and Their Selenium and Tellurium Derivatives by Convergent Tandem Annulation. Angew. Chem. Int. Ed. Engl. 2011, 50, 8122–8126. DOI: 10.1002/anie.201101948.
  • Gai, R. M.; Schumacher, R. F.; Back, D. F.; Zeni, G. Regioselective Formation of Tetrahydroselenophenes via 5-Exo-Dig-Cyclization of 1-Butylseleno-4-Alkynes. Org. Lett. 2012, 14, 6072–6075. DOI: 10.1021/ol302919b.
  • Wang, H.; Ying, J.; Ai, H. J.; Wu, X. F. Convenient Carbonylative Synthesis of Selenium‐Substituted Vinyl Iodides: (E)‐5‐(Iodomethylene)‐1,3‐Selenazolidin‐2‐Ones. Eur. J. Org. Chem. 2019, 2019, 1553–1556. DOI: 10.1002/ejoc.201801737.
  • Saddique, F. A.; Zahoor, A. F.; Faiz, S.; Naqvi, S. A. R.; Usman, M.; Ahmad, M. Recent Trends in Ring Opening of Epoxides by Amines as Nucleophiles. Synth. Commun. 2016, 46, 831–868. DOI: 10.1080/00397911.2016.1170148.
  • Lu, L. G.; Bi, K.; Huang, X. B.; Liu, M. C.; Zhou, Y. B.; Wu, H. Y. Catalyst and Additive‐Free Selective Ring‐Opening Selenocyanation of Heterocycles with Elemental Selenium and TMSCN. Adv. Synth. Catal. 2021, 363, 1346–1351. DOI: 10.1002/adsc.202001423.
  • Shafiee, A.; Ebrahimzadeh, M. A.; Maleki, A. Selenium Heterocycles. XLIII. Syntheses of 3,5‐Diaryl‐1,2,4‐Thiadiazoles and 3,5‐Diaryl‐1,2,4‐Selenadiazoles. J. Heterocyclic. Chem. 1999, 36, 901–903. DOI: 10.1002/jhet.5570360412.
  • Putta, V. R. K.; Gujjarappa, R.; Vodnala, N.; Gupta, R.; Pujar, P. P.; Malakar, C. C. The Facile and Efficient Organocatalytic Platform for Accessing 1,2,4-Selenadiazoles and Thiadiazoles under Aerobic Conditions. Tetrahedron. Lett. 2018, 59, 904–908. DOI: 10.1016/j.tetlet.2018.01.063.
  • Dotsenko, V. V.; Frolov, K. A.; Krivokolysko, S. G. Synthesis of Functionally Substituted 1,2,4-Selenadiazoles. Chem. Heterocycl. Comp. 2013, 49, 353–355. DOI: 10.1007/s10593-013-1256-7.
  • Dresch, L. C.; de Araujo, B. B.; Casagrande, O. D. L.; Stieler, R. A Novel Class of Nickel(II) Complexes Containing Selenium-Based Bidentate Ligands Applied in Ethylene Oligomerization. RSC Adv. 2016, 6, 104338–104344.
  • Chen, Z.; Li, D.; Xu, N.; Fang, J.; Yu, Y.; Hou, W.; Ruan, B. H.; Zhu, P.; Ma, R.; Lu, S.; et al. Novel 1,3,4-Selenadiazole-Containing Kidney-Type Glutaminase Inhibitors Showed Improved Cellular Uptake and Antitumor Activity. J. Med. Chem. 2019, 62, 589–603. DOI: 10.1021/acs.jmedchem.8b01198.
  • Varshney, H.; Ahmad, A.; Rauf, A. Synthesis of Novel 2, 5-Disubstituted-1, 3, 4-Selenadiazoles from Fatty Acid Hydrazides. Arab. J. Chem. 2018, 11, 143–148. DOI: 10.1016/j.arabjc.2014.08.002.
  • Kendall, R. V.; Olofson, R. A. 1,3,4-Selenadiazole. J. Org. Chem. 1970, 35, 806–808. DOI: 10.1021/jo00828a060.
  • Lalezari, I.; Shafiee, A. Selenium Heterocycles. IV Synthesis of 2‐Amino‐1, 3, 4‐Selenadiazoles and 2‐Substituted‐6‐Phenylimidazo[2,1‐b]‐1,3,4‐Selenadiazoles. J. Heterocyclic. Chem. 1971, 8, 835–837. DOI: 10.1002/jhet.5570080529.
  • Bowroju, S. K.; Bavanthula, R. I2/DMSO-Catalyzed One-Pot Approach for the Synthesis of 1,3,4-Selenadiazoles. RSC Adv. 2021, 11, 5724–5728. DOI: 10.1039/d0ra10576g.
  • Wei, Z.; Zhang, Q.; Tang, M.; Zhang, S.; Zhang, Q. Diversity-Oriented Synthesis of 1,2,4-Triazols, 1,3,4-Thiadiazols and 1,3,4-Selenadiazoles from N-Tosylhydrazones. Org. Lett. 2021, 23, 4436–4440. DOI: 10.1021/acs.orglett.1c01379.
  • Saleem, F.; Rao, G. K.; Kumar, A.; Mukherjee, G.; Singh, A. K. Half-Sandwich Ruthenium(II) Complexes of Click Generated 1,2,3-Triazole Based Organosulfur/-Selenium Ligands: Structural and Donor Site Dependent Catalytic Oxidation and Transfer Hydrogenation Aspects. Organometallics 2013, 32, 3595–3603. DOI: 10.1021/om400057e.
  • Saleem, F.; Rao, G. K.; Kumar, A.; Kumar, S.; Singh, M. P.; Singh, A. K. Palladium(II) Complexes Bearing the 1,2,3-Triazole Based Organosulfur/Selenium Ligand: Synthesis, Structure and Applications in Heck and Suzuki–Miyaura Coupling as a Catalyst via Palladium Nanoparticles. RSC Adv. 2014, 4, 56102–56111.
  • Kong, F.; Zhou, C.; Wang, J.; Yu, Z.; Wang, R. Water-Soluble Palladium Click Chelating Complex: An Efficient and Reusable Precatalyst for Suzuki-Miyaura and Hiyama Reactions in Water. Chem. Plus. Chem. 2013, 78, 536. DOI: 10.100/cplu.201300067.
  • Donnelly, K. F.; Segarra, C.; Shao, L.-X.; Suen, R.; Müller-Bunz, H.; Albrecht, M. Adaptive N-Mesoionic Ligands Anchored to a Triazolylidene for Ruthenium-Mediated (de) Hydrogenation Catalysis. Organometallics 2015, 34, 4076–4084. DOI: 10.1021/acs.organomet.5b00533.
  • Kumar, S.; Saleem, F.; Singh, A. K. Click Generated 1,2,3-Triazole Based Organosulfur/Selenium Ligands and Their Pd(II) and Ru(II) Complexes: Their Synthesis, Structure and Catalytic Applications. Dalton. Trans. 2016, 45, 11445–11458. DOI: 10.1039/c6dt01406b.
  • Karci, F.; Karci, F.; Demircali, A.; Yamac, M. Synthesis, Solvatochromic Properties and Antimicrobial Activities of Some Novel Pyridone-Based Disperse Disazo Dyes. J. Mol. Liq. 2013, 187, 302–308. DOI: 10.1016/j.molliq.2013.08.005.
  • Adeel, S.; Gulzar, T.; Azeem, M.; Saeed, M.; Hanif, I.; Iqbal, N. Appraisal of Marigold Flower Based Lutein as Natural Colourant for Textile Dyeing under the Influence of Gamma Radiations. Radiat. Phys. Chem. 2017, 130, 35–39. DOI: 10.1016/j.radphyschem.2016.07.010.
  • Khalifa, M. E.; Abdel-Hafez, S. H.; Gobouri, A. A.; Kobeasy, M. I. Synthesis and Biological Activity of Novel Arylazothiazole Disperse Dyes Containing Selenium for Dyeing Polyester Fibers. Phosphorus Sulf. Silicon. Relat. Element. 2015, 190, 461–476. DOI: 10.1080/10426507.2014.948622.
  • Ulrich, G.; Ziessel, R.; Harriman, A. The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed. Angew. Chem. Int. Ed. Engl. 2008, 47, 1184–1201. DOI: 10.1002/anie.200702070.
  • Rezende, L. C.; Melo, S. M.; Boodts, S.; Verbelen, B.; Emery, F. S.; Dehaen, W. Thiocyanation of 3-Substituted and 3,5-Disubstituted BODIPYs and Its Application for the Synthesis of New Fluorescent Sensors. Dyes Pigments 2018, 154, 155–163. DOI: 10.1016/j.dyepig.2018.01.043.
  • Ni, Y.; Wu, J. Far-Red and near Infrared BODIPY Dyes: Synthesis and Applications for Fluorescent pH Probes and Bio-Imaging. Org. Biomol. Chem. 2014, 12, 3774–3791. DOI: 10.1039/c3ob42554a.
  • Nakashima, M.; Iizuka, K.; Karasawa, M.; Ishii, K.; Kubo, Y. Selenium-Containing BODIPY Dyes as Photosensitizers for Triplet–Triplet Annihilation Upconversion. J. Mater. Chem. C 2018, 6, 6208–6215. DOI: 10.1039/C8TC00944A.
  • Jung, H. S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J. L.; Kim, J. S. Organic Molecule-Based Photothermal Agents: An Expanding Photothermal Therapy Universe. Chem. Soc. Rev. 2018, 47, 2280–2297. DOI: 10.1039/C7CS00522A.
  • Cheng, Z.; Zhang, T.; Wang, W.; Shen, Q.; Hong, Y.; Shao, J.; Xie, X.; Fei, Z.; Dong, X. DAD Structured Selenadiazolesbenzothiadiazole-Based near-Infrared Dye for Enhanced Photoacoustic Imaging and Photothermal Cancer Therapy. Chin. Chem. Lett. 2021, 32, 1582–1587. DOI: 10.1016/j.cclet.2021.02.017.
  • Pérez-Llarena, F. J.; Kerff, F.; Zamorano, L.; Fernández, M. C.; Nuñez, M. L.; Miró, E.; Oliver, A.; Navarro, F.; Bou, G. Characterization of the New AmpC β-Lactamase FOX-8 Reveals a Single Mutation, Phe313Leu, Located in the R2 Loop That Affects Ceftazidime Hydrolysis. Antimicrob. Agents Chemother. 2013, 57, 5158–5161. DOI: 10.1128/aac.00818-13.
  • Yang, Y. Y.; Shou, W. G.; Hong, D.; Wang, Y. G. Selective Synthesis of 4-Alkylidene-β-Lactams and N, N′-Diarylamidines from Azides and Aryloxyacetyl Chlorides via a Ketenimine-Participating One-Pot Cascade Process. J. Org. Chem. 2008, 73, 3574–3577. DOI: 10.1021/jo702733h.
  • Bankar, D. B.; Koketsu, M. Facile Synthesis of Selenium‐Containing Bicyclic β‐Lactams through Enyne Metathesis. Eur. J. Org. Chem. 2010, 14, 2742–2745. DOI: 10.1002/ejoc.201000055.
  • Tuba, R. Synthesis of β-Lactams by Transition Metal Promoted Staudinger Reactions: Alternative Synthetic Approaches from Transition Metal Enhanced Organocatalysis to in Situ, Highly Reactive Intermediate Synthesis and Catalytic Tandem Reactions. Org. Biomol. Chem. 2013, 11, 5976–5988. DOI: 10.1039/c3ob41048j.
  • Garud, D. R.; Makimura, M.; Koketsu, M. Synthetic Approaches to Selenacephams and Selenacephems via a Cleavage of Diselenide and Selenium Anion. New J. Chem. 2011, 35, 581–586. DOI: 10.1039/C0NJ00782J.
  • Pinho e Melo, T. M. Recent Advances on the Synthesis and Reactivity of Isoxazoles. Curr. Organ. Chem. 2005, 9, 925–958. DOI: 10.2174/1385272054368420.
  • Potapov, V. A.; Amosova, S. V.; Volkova, K. A.; Penzik, M. V.; Albanov, A. I. Reactions of Selenium Dichloride and Dibromide with Divinyl Selenide: Synthesis of Novel Selenium Heterocycles and Rearrangement of 2,6-Dihalo-1,4-Diselenanes. Tetrahedron. Lett. 2010, 51, 89–92. DOI: 10.1016/j.tetlet.2009.10.073.
  • Bedi, A.; Debnath, S.; Zade, S. S. Diselenolodiselenole: A Selenium Containing Fusedheterocycle for Conjugated Systems. Chem. Commun. (Camb). 2014, 50, 13454–13456. DOI: 10.1039/c4cc05439c.
  • Debnath, S.; Chithiravel, S.; Sharma, S.; Bedi, A.; Krishnamoorthy, K.; Zade, S. S. Selenium-Containing Fused Bicyclic Heterocycle Diselenolodiselenole: Field Effect Transistor Study and Structure–Property Relationship. ACS Appl. Mater. Interfaces 2016, 8, 18222–18230. DOI: 10.1021/acsami.6b02154.
  • Wilhelm, E. A.; Jesse, C. R.; Bortolatto, C. F.; Nogueira, C. W.; Savegnago, L. Anticonvulsant and Antioxidant Effects of 3-Alkynyl Selenophene in 21-Day-Old Rats on Pilocarpine Model of Seizures. Brain Res. Bull. 2009, 79, 281–287. DOI: 10.1016/j.brainresbull.2009.03.006.
  • Męcik, P.; Pigulski, B.; Szafert, S. Serendipitous Formation of Various Selenium Heterocycles Hidden in the Classical Synthesis of Selenophene. Org. Lett. 2021, 23, 1066–1070. DOI: 10.1021/acs.orglett.0c04275.
  • Bregadze, V. I. Dicarba-Closo-Dodecaboranes C2B10H12 and Their Derivatives. Chem. Rev. 1992, 92, 209–223. DOI: 10.1021/cr00010a002.
  • Wrackmeyer, B.; Klimkina, E. V.; Milius, W. Oxidation of 1,3,2-Diselenaphospholanes with an Annelated Dicarba-Closo-Dodecaborane(12) Unit by Addition of Sulfur and Selenium. Molecular Structure of a Novel 1,2,4,5-Tetraselena-3-Phospha Heterocycle. J. Organomet. Chem. 2013, 747, 140–147. DOI: 10.1016/j.jorganchem.2013.03.028.
  • Zhao, R.; Holmgren, A. A Novel Antioxidant Mechanism of Ebselen Involving Ebselen Diselenide, a Substrate of Mammalian Thioredoxin and Thioredoxin Reductase. J. Biol. Chem. 2002, 277, 39456–39462. DOI: 10.1074/jbc.M206452200.
  • Parnham, M.; Sies, H. Ebselen: Prospective Therapy for Cerebral Ischaemia. Expert Opin. Invest. Drugs 2000, 9, 607–619. DOI: 10.1517/13543784.9.3.607.
  • Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth, T. Green Chemistry with Selenium Reagents: Development of Efficient Catalytic Reactions. Angew. Chem. Int. Ed. Engl. 2009, 48, 8409–8411. DOI: 10.1002/anie.200903893.
  • Qader, M.; Zaman, K. H.; Hu, Z.; Wang, C.; Wu, X.; Cao, S. Aspochalasin H1: A New Cyclic Aspochalasin from Hawaiian Plant-Associated Endophytic Fungus Aspergillus sp. FT1307. Molecules 2021, 26, 4239. DOI: 10.3390/molecules26144239.
  • Laskowska, A.; Pacuła-Miszewska, A. J.; Długosz-Pokorska, A.; Janecka, A.; Wojtczak, A.; Ścianowski, J. Attachment of Chiral Functional Groups to Modify the Activity of New GPx Mimetics. Materials 2022, 15, 2068. DOI: 10.3390/ma15062068.
  • Balkrishna, S. J.; Bhakuni, B. S.; Chopra, D.; Kumar, S. Cu-Catalyzed Efficient Synthetic Methodology for Ebselen and Related Se-N Heterocycles. Org. Lett. 2010, 12, 5394–5397. DOI: 10.1021/ol102027j.
  • Pacuła, A. J.; Kaczor, K. B.; Wojtowicz, A.; Antosiewicz, J.; Janecka, A.; Długosz, A.; Janecki, T.; Ścianowski, J. New Glutathione Peroxidase Mimetics—Insights into Antioxidant and Cytotoxic Activity. Bioorg. Med. Chem. 2017, 25, 126–131. DOI: 10.1016/j.bmc.2016.10.018.
  • Amosova, S. V.; Martynov, A. V.; Albanov, A. I.; Potapov, V. A. Synthesis of Novel (2,3-Dihydro-1,4-Thiaselenin-2-yl)Sulfanyl Substituted Pharmacophoric Nitrogen Heterocycles Based on 2-(Bromomethyl)-1,3-Thiaselenole. Chem. Heterocycl. Comp. 2020, 56, 226–232. DOI: 10.1007/s10593-020-02648-x.
  • Shaaban, S.; Negm, A.; Sobh, M. A.; Wessjohann, L. A. Organoselenocyanates and Symmetrical Diselenides Redox Modulators: Design, Synthesis and Biological Evaluation. Eur. J. Med. Chem. 2015, 97, 190–201. DOI: 10.1016/j.ejmech.2015.05.002.
  • Zani, F.; Vicini, P. Antimicrobial Activity of Some 1,2‐Benzisothiazoles Having a Benzenesulfonamide Moiety. Arch. Pharm. Pharm. Med. Chem. 1998, 331, 219–223. DOI: 10.1002/(sici)1521-4184(199806)331:6 < 219::aid-ardp219 > 3.0.co;2-u.
  • Abdel-Hafez, S. H. Selenium Containing Heterocycles: Synthesis, anti-Inflammatory, Analgesic and anti-Microbial Activities of Some New 4-Cyanopyridazine-3(2H)Selenone Derivatives. Eur. J. Med. Chem. 2008, 43, 1971–1977. DOI: 10.1016/j.ejmech.2017.12.006.
  • Abdel-Hafez, S. H. Synthesis of Novel Selenium Containing Sulfa Drugs and Their Antibacterial Activities. Russ. J. Bioorg. Chem. 2010, 36, 370–376. DOI: 10.1134/S1068162010030131.
  • Vasiljeva, J.; Domracheva, I.; Arsenyan, P. Selenium Analogues of (S)-Clopidogrel: Preparation Method and Properties. Tetrahedron. Lett. 2016, 57, 196–198. DOI: 10.1016/j.tetlet.2015.11.102.
  • Arsenyan, P.; Paegle, E.; Belyakov, S.; Shestakova, I.; Jaschenko, E.; Domracheva, I.; Popelis, J. Synthesis, Structure and Cytotoxicity of 3-C, N, S, Se Substituted Benzo[b] Selenophene Derivatives. Eur. J. Med. Chem. 2011, 46, 3434–3443. DOI: 10.1016/j.ejmech.2011.05.008.
  • Arsenyan, P. A Simple Method for the Preparation of Selenopheno[3,2-b]- and [2,3-b]Thiophenes. Tetrahedron. Lett. 2014, 55, 2527–2529. DOI: 10.1016/j.tetlet.2014.03.024.
  • Huang, J. D.; Chai, S.; Ma, H.; Dong, B. Impact of Edge-Core Structures and Substituent Effects on the Electronic and Charge-Transport Properties of Heteroaromatic Ring-Fused Oligomers. J. Phys. Chem. C 2015, 119, 33–44. DOI: 10.1021/jp5086922.
  • Arsenyan, P.; Petrenko, A.; Belyakov, S. Improved Conditions for the Synthesis and Transformations of Aminomethyl Selenophenothiophenes. Tetrahedron 2015, 71, 2226–2233. DOI: 10.1016/j.tet.2015.02.078.
  • Ganther, H. E. Selenium Metabolism, Selenoproteins and Mechanisms of Cancer Prevention: Complexities with Thioredoxin Reductase. Carcinogenesis 1999, 20, 1657–1666. DOI: 10.1093/carcin/20.9.1657.
  • Adly, M. E.; Gedawy, E. M.; El-Malah, A. A.; El-Telbany, F. A. Synthesis and Anticancer Activity of Certain Selenophene Derivatives. Russ. J. Org. Chem. 2019, 55, 1189–1196. DOI: 10.1134/S1070428019080189.
  • Katsuta, S.; Miyagi, D.; Yamada, H.; Okujima, T.; Mori, S.; Nakayama, K. I.; Uno, H. Synthesis, Properties and Ambipolar Organic Field-Effect Transistor Performances of Symmetrically Cyanated Pentacene and Naphthacene as Air-Stable Acene Derivatives. Org. Lett. 2011, 13, 1454–1457. DOI: 10.1021/ol200145r.
  • Holzer, B.; Dellago, B.; Thamm, A. K.; Mathis, T.; Stoger, B.; Horkel, E.; Hametner, C.; Batlogg, B.; Frohlich, J.; Lumpi, D. Symmetric Mixed Sulfur-Selenium Fused Ring Systems as Potential Materials for Organic Field‐Effect Transistors. Chemistry 2020, 26, 2869–2882. DOI: 10.1002/chem.201903958.
  • Speck, K.; Magauer, T. The Chemistry of Isoindole Natural Products. Beilstein J. Org. Chem. 2013, 9, 2048–2078. DOI: 10.3762/bjoc.9.243.
  • Wood, J. L.; Stoltz, B. M.; Goodman, S. N. Total Synthesis of (+)-RK-286c, (+)-MLR-52,(+)-Staurosporine and (+)-K252a. J. Am. Chem. Soc. 1996, 118, 10656–10657. DOI: 10.1021/ja9626143.
  • Wang, R. Y.; Kao, W. T.; Shih, T. L. Synthesis of Selenium‐Containing Biindolyls and Their Diels–Alder Reaction toward the Synthesis of Heteroannulated [a]‐ and [c]‐Carbazoles. J. Chin. Chem. Soc. 2020, 67, 829–837. DOI: 10.1002/jccs.201900278.
  • Patra, A.; Agrawal, V.; Bhargav, R.; Bhardwaj, D.; Chand, S.; Sheynin, Y.; Bendikov, M. Metal Free Conducting PEDOS, PEDOT, and Their Analogues via an Unusual Bromine-Catalyzed Polymerization. Macromolecules 2015, 48, 8760–8764. DOI: 10.1021/acs.macromol.5b01777.
  • Wijsboom, Y. H.; Sheynin, Y.; Patra, A.; Zamoshchik, N.; Vardimon, R.; Leitus, G.; Bendikov, M. Tuning of Electronic Properties and Rigidity in PEDOT Analogs. J. Mater. Chem. 2011, 21, 1368–1372. DOI: 10.1039/C0JM02679D.
  • Wang, Y.; Yuan, Y.; Wang, Z.; Gu, Y.; Fu, S.; Kong, L.; Li, Y. Silver-Mediated [2 + 2+1] Cyclization Reaction of Diynes with Elemental Selenium/Sulfur to Synthesize 3,4-Substituted Cyclopenta[c]Selenophenes/Cyclopenta[c]Thiophenes. Org. Lett. 2021, 23, 5911–5916. DOI: 10.1021/acs.orglett.1c02018.
  • Musiol, R.; Jampilek, J.; Buchta, V.; Silva, L.; Niedbala, H.; Podeszwa, B.; Palka, A.; Majerz-Maniecka, K.; Oleksyn, B.; Polanski, J. Antifungal Properties of New Series of Quinoline Derivatives. Bioorg. Med. Chem. 2006, 14, 3592–3598. DOI: 10.1016/j.bmc.2006.01.016.
  • Abdel-Moty, S. G.; Abdel-Rahman, M. H.; Elsherief, H. A.; Kafafy, A.-H. N. Synthesis of Some Quinoline Thiosemicarbazone Derivatives of Potential Antimicrobial Activity. Bull. Pharm. Sci. 2005, 28, 79–93. DOI: 10.21608/BFSA.2005.65235.
  • Abdel-Hafez, S. H. Selenium Containing Heterocycles: Synthesis and Pharmacological Activities of Some New Selenolo[2,3-b]Quinoline Derivatives and Related Pentacyclic Systems. Phosphorus Sulf. Silicon. Relat. Element. 2010, 185, 2543–2550. DOI: 10.1080/10426501003752161.
  • Caputo, R.; Capone, S.; Della Greca, M.; Longobardo, L.; Pinto, G. Novel Selenium-Containing Non-Natural Diamino Acids. Tetrahedron. Lett. 2007, 48, 1425–1427. DOI: 10.1016/j.tetlet.2006.12.096.
  • Abdel-Hafez, S. H.; Saad, H. A.; Aly, M. R. E. Synthesis of Selenium-Containing Amino Acid Analogues and Their Biological Study. Russ. J. Bioorg. Chem. 2011, 37, 261–269. DOI: 10.1134/S1068162011030034.
  • Kommula, D.; Li, Q.; Ning, S.; Liu, W.; Wang, Q.; Zhao, Z. K. Iodine Mediated Synthesis of Diaryl Diselenides Using SeO2 as a Selenium Source. Synth. Commun. 2020, 50, 1026–1034. DOI: 10.1080/00397911.2020.1728775.
  • Dyachenko, I. V.; Dyachenko, V. D. Ethyl 3-Amino-3-Selenoxopropanoate as a New Reagent for the Synthesis of Selenium-Containing Heterocycles. Russ. J. Gen. Chem. 2015, 85, 1673–1676. DOI: 10.1134/S1070363215070178.
  • Piguet, C.; Bernardinelli, G.; Hopfgartner, G. Helicates as Versatile Supramolecular Complexes. Chem. Rev. 1997, 97, 2005–2062. DOI: 10.1021/cr960053s.
  • Vanitha, A.; Mobin, S. M.; Manimaran, B. Synthesis of Selenium Bridged Metallacycles via Oxidative Addition of Diaryl Diselenide across Re–Re Bond: Novel One-Pot Reaction Approach. J. Organomet. Chem. 2011, 696, 1609–1617. DOI: 10.1016/j.jorganchem.2011.01.026.
  • Arsenyan, P.; Vasiljeva, J.; Belyakov, S.; Liepinsh, E.; Petrova, M. Fused Selenazolinium Salt Derivatives with a Se–N+ Bond: Preparation and Properties. Eur. J. Org. Chem. 2015, 26, 5842–5855. DOI: 10.1002/ejoc.201500582.
  • Potapov, V. A.; Musalov, M. V.; Amosova, S. V. Reactions of Selenium Dichloride and Dibromide with Unsaturated Ethers. Annulation of 2,3-Dihydro-1,4-Oxaselenine to the Benzene Ring. Tetrahedron. Lett. 2011, 52, 4606–4610. DOI: 10.1016/j.tetlet.2011.06.071.
  • Toyoda, Y.; Koketsu, M. Synthesis and Z/E Isomerization of 2-Imino-1,3-Thiaselenolanes via Iodocyclization. Tetrahedron 2012, 68, 10496–10501. DOI: 10.1016/j.te.2012.07.083.
  • Ohnuma, A.; Nagata, T.; Komura, K.; Ando, H.; Ishihara, H.; Koketsu, M. Preparation of 2H-5,6-Dihydroselenines Using α-Alkoxy Carbonylselenoacetamide. J. Heterocyclic Chem 2015, 52, 513–517. DOI: 10.1002/jhet.2086.
  • Xu, X.; Peng, W.; Liu, C.; Li, S.; Lei, J.; Wang, Z.; Kong, L.; Han, C. Flavone-Based Natural Product Agents as New Lysine-Specific Demethylase 1 Inhibitors Exhibiting Cytotoxicity against Breast Cancer Cells in Vitro. Bioorg. Med. Chem. 2019, 27, 370–374. DOI: 10.1016/j.bmc.2018.12.013.
  • Nobre, P. C.; Peglow, T. J.; Bartz, R. H.; Barcellos, A. M.; Jacob, R. G.; Silva, M. S.; Perin, G. Elemental Chalcogen (Se, S) in PEG-400 to the Synthesis of Seleno-and Thioflavones from 2-Chlorophenyl Ethynyl Ketone and Nucleophilic Species of Chalcogen. J. Braz. Chem. Soc. 2021, 2021, 1541–1551. DOI: 10.21577/0103-5053.20210051.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.