204
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and structural characterization of N,N-spiro cyclotriphosphazene derivatives with one stereogenic center

Pages 15-20 | Received 19 Apr 2022, Accepted 06 Jul 2022, Published online: 19 Jul 2022

References

  • Sun, J.; Wang, X.; Wu, D. Novel Spirocyclic Phosphazene-Based Epoxy Resin for Halogen-Free Fire Resistance: Synthesis, Curing Behaviors, and Flammability Characteristics. ACS Appl. Mater. Interfaces 2012, 4, 4047–4061. DOI: 10.1021/am300843c.
  • Beşli, S.; Mutlu, C.; İbişoğlu, H.; Yuksel, F.; Allen, C. W. Synthesis of a New Class of Fused Cyclotetraphosphazene Ring Systems. Inorg. Chem. 2015, 54, 334–341. DOI: 10.1021/ic5025235.
  • Çil, E.; Arslan, M. Oxime-Phosphazenes Containing Dioxybiphenyl Groups. Inorg. Chim. Acta 2009, 362, 1421–1427. DOI: 10.1016/j.ica.2008.06.030.
  • Kılıç, A.; Begeç, S.; Kılıç, Z.; Hökelek, T. Phosphorus–Nitrogen Compounds: Part V. Phenolysis of p-Trichloro-n-Dichlorophosphorylmonophosphazene and the Crystal Structure of 1-(Dichlorophosphinyl)-2-Chloro-2,2-Bis (2,4,6-Tri-Tert-Butylphenoxy) Phosphazene. J. Mol. Struct. 2000, 516, 255–262. DOI: 10.1016/S0022-2860(99)00232-X.
  • Manners, I. Polymers and the Periodic Table: Recent Developments in Inorganic Polymer Science. Angew. Chem. Int. Ed. Engl. 1996, 35, 1602–1621. DOI: 10.1002/anie.199616021.
  • Ün, İ.; İbişoğlu, H.; Şahin Ün, Ş.; Çoşut, B.; Kılıç, A. Syntheses, Characterizations, Thermal and Photophysical Properties of Cyclophosphazenes Containing Adamantane Units. Inorg. Chim. Acta 2013, 399, 219–226. DOI: 10.1016/j.ica.2013.01.028.
  • Ward, M. D. Photo-İnduced Electron and Energy Transfer in Non-Covalently Bonded Supramolecular Assemblies. Chem. Soc. Rev. 1997, 26, 365–375. DOI: 10.1039/cs9972600365.
  • Balzani, V.; Bergamini, G.; Ceroni, P. From the Photochemistry of Coordination Compounds to Light-Powered Nanoscale Devices and Machines. Coord. Chem. Rev. 2008, 252, 2456–2469. DOI: 10.1016/j.ccr.2007.11.009.
  • Singler, R. E.; Deome, A. J.; Dunn, D. A.; Bieberich, M. J. Preparation and Properties of Phosphazene Fire-Resistant Fluids. Indus. Eng. Chem. Prod. Res. Dev. 1986, 25, 46–57. DOI: 10.1021/i300021a012.
  • Keller, M. A.; Saba, C. S. Oxidative Stability and Degradation Mechanism of a Cyclotriphosphazene Lubricant. Anal. Chem. 1996, 68, 3489–3492. DOI: 10.1021/ac960632x.
  • Allcock, H. R.; Kim, C. Photochromic Polyphosphazenes with Spiropyran Units. Macromolecules 1991, 24, 2846–2851. DOI: 10.1021/ma00010a032.
  • Allcock, H. R.; Krause, W. E. Polyphosphazenes with Adamantyl Side Groups. Macromolecules 1997, 30, 5683–5687. DOI: 10.1021/ma970066n.
  • Allen, C. W. The Use of Phosphazenes as Fire Resistant Materials. J. Fire Sci. 1993, 11, 320–328. DOI: 10.1177/073490419301100404.
  • Hacıvelioğlu, F.; Okutan, E.; Çelik, S. Ü.; Yeşilot, S.; Bozkurt, A.; Kılıç, A. Controlling Phosphonic Acid Substitution Degree on Proton Conducting Polyphosphazenes. Polymer 2012, 53, 3659–3668. DOI: 10.1016/j.polymer.2012.06.033.
  • Chandrasekhar, V.; Thilagar, P.; Murugesa Pandian, B. Cyclophosphazene-Based Multi-Site Coordination Ligands. Coord. Chem. Rev. 2007, 251, 1045–1054. DOI: 10.1016/j.ccr.2006.07.005.
  • Kumar, N. S.; Swamy, K. C. K. Synthesis and Structures of Unsymmetrical Bis- and Tris-Cyclotriphosphazenes. Polyhedron 2004, 23, 979–985. DOI: 10.1016/j.poly.2003.12.024.
  • Davarcı, D.; Zorlu, Y. Group 12 Metal Coordination Polymers Built on a Flexible Hexakis(3-Pyridyloxy)Cyclotriphosphazene Ligand: Effect of the Central Metal İons on the Construction of Coordination Polymers. Polyhedron 2017, 127, 1–8. DOI: 10.1016/j.poly.2017.01.040.
  • Beşli, S. Isomeric Spiro and Ansa Macrocyclic Derivatives of Spiro-Aminopropanoxy-Cyclotriphosphazene. Inorg. Chem. Commun. 2005, 8, 449–452. DOI: 10.1016/j.inoche.2005.02.009.
  • Begeç, S.; Alataş, S.; Kılıç, A. The Reactions of Phenoxy Substituted Phosphazenes with 1,3-Propanediol and 3-Amino-1-Propanol. Heterocycles 2007, 2, 281–287. DOI: 10.3987/COM-06-10915.
  • Çoşut, B.; İbişoğlu, H.; Kılıç, A.; Yeşilot, S. Synthesis and Enantiomeric Analysis of Cyclotriphosphazene Derivatives with One Centre of Chirality. Inorg. Chim. Acta 2009, 362, 4931–4936. DOI: 10.1016/j.ica.2009.07.022.
  • Beşli, S.; Coles, S. J.; Davarcı, D.; Davies, D. B.; Yuksel, F. Effect of Chain Length on the Formation of İntramolecular and İntermolecular Products: Reaction of Diols with Cyclotriphosphazene. Polyhedron 2011, 30, 329–339. DOI: 10.1016/j.poly.2010.10.020.
  • İbişoğlu, H.; Beşli, S.; Yuksel, F.; Ün, İ.; Kılıç, A. Investigation of Nucleophilicsubstitution Pathway for the Reactions of 1,4-Benzodioxan-6-Amine Withchlorocyclophosphazenes. Inorg. Chim. Acta 2014, 409, 216–226. DOI: 10.1016/j.ica.2013.09.030.
  • Coles, S. J.; Davies, D. B.; Eaton, R. J.; Kılıç, A.; Shaw, R. A.; Çiftçi, G. Y. Structural Andstereogenic Properties of Spiro- and Ansa-Substituted 1,3-Propanedioxy Derivatives of a Spermine-Bridged Cyclotriphosphazene. Polyhedron 2006, 25, 953–962. DOI: 10.1016/j.poly.2005.10.023.
  • Coles, S. J.; Davies, D. B.; Eaton, R. J.; Hursthouse, M. B.; Kiliç, A.; Mayer, T. A.; Shaw, R. A.; Yenilmez, G. Chiral Configurations of Spermine-Bridged Cyclotriphosphazatrienes. J. Chem. Soc. Dalton Trans. 2002, 3, 365–370. DOI: 10.1039/B104973A.
  • İbişoğlu, H.; Yenilmez Çiftçi, G.; Kılıç, A.; Tanrıverdi, E.; Ün, İ.; et al. Formation of Novel Spiro, Spiroansa and Dispiroansa Derivatives of Cyclotetraphosphazene from the Reactions of Polyfunctional Amines with Octachlorocyclotetraphosphazatetraene. J. Chem. Sci. 2009, 121, 125–135. DOI: 10.1007/s12039-009-0014-y.
  • Uslu, A.; Şahin Ün, Ş.; Kılıç, A.; Yılmaz, Ş.; Yuksel, F.; Hacıvelioğlu, F. The Synthesis and Characterization of 4-İsopropylanilino Derivatives of Cyclotriphosphazene. Inorg. Chim. Acta 2013, 405, 140–146. DOI: 10.1016/j.ica.2013.05.031.
  • Okumuş, E.; Kılıç, A.; Kılıç, Z. A.; Kayalak, H.; et al. The Syntheses of N,N-Spiro Bridged Cyclotriphosphazene Derivatives with (4-Fluorobenzyl)Pendant Arms: Structural and Stereogenic Properties, DNA İnteractions, Antimicrobial and Cytotoxic Activities. Inorg. Chim. Acta 2019, 486, 172–184. DOI: 10.1016/j.ica.2018.10.028.
  • Yıldırım, T.; Bilgin, K.; Çiftçi, G. Y.; Eçik, E. T.; Şenkuytu, E.; Uludağ, Y.; Tomak, L.; Kılıç, A. Synthesis, Cytotoxicity and Apoptosis of Cyclotriphosphazene Compounds as Anti-Cancer Agents. Eur. J. Med. Chem. 2012, 52, 213–220. DOI: 10.1016/j.ejmech.2012.03.018.
  • Baek, H.; Cho, Y.; Lee, C. O.; Sohn, Y. S. Synthesis and Antitumor Activity of Cyclotriphosphazene-(Diamine)Platinum(II) Conjugates. Anticancer Drugs. 2000, 11, 715–725. DOI: 10.1097/00001813-200010000-00008.
  • de Wolf, H. K.; de Raad, M.; Snel, C.; van Steenbergen, M. J.; Fens, M. H. A. M.; Storm, G.; Hennink, W. E. Biodegradable Poly(2-Dimethylamino Ethylamino)Phosphazene for In Vivo Gene Delivery to Tumor Cells. Effect of Polymer Molecular Weight. Pharm. Res. 2007, 24, 1572–1580. DOI: 10.1007/s11095-007-9299-z.
  • Sournies, F.; Guerch, G.; Labarre, J.-F.; Jaud, J. On the Antitumor Effectiveness of Aziridinocyclophosphazenes: Crystal and Molecular Structure of the Non-Active 2,2-Bis (1-Aziridinyl)-4,4,6,6-Tetrachlorocyclotriphosphazene, gem-N3P3Az2Cl4. J. Mol. Struct. 1990, 238, 383–390. DOI: 10.1016/0022-2860(90)85029-I.
  • Nichol, J. L.; Morozowich, N. L.; Allcock, H. R. Biodegradable Alanine and Phenylalanine Alkyl Ester Polyphosphazenes as Potential Ligament and Tendon Tissue Scaffolds. Polym. Chem. 2013, 4, 600–606. DOI: 10.1039/C2PY20631E.
  • Cohen, S.; Bano, M. C.; Visscher, K. B.; Chow, M.; Allcock, H. R.; Langer, R. Ionically Crosslinkable Polyphosphazene: A Novel Polymer for Microencapsulation. J. Am. Chem. Soc 1990, 112, 7832–7833. DOI: 10.1021/ja00177a074.
  • Yıldız, M.; Yılmaz, S.; Dölger, B. Synthesis, Spectral Properties, and Antimicrobial Activity of 2-Arilamino-2,4,4,6,6-Pentachloro-1,3,5,2λ5,4λ5,6λ5-Triazatriphosphines and Poly[Bis(4-Fluorophenylamino)Phosphazene]. Russ. J. Gen. Chem. 2007, 77, 2117–2122. DOI: 10.1134/S1070363207120079.
  • Diefenbach, U.; Bloy, M.; Stromburg, B. Metal Ion Uptake of 2-(2-Pyridyl) Ethylamino-Substituted Phosphazenes. Phosphorus Sulfur Silicon Relat. Elem. 1999, 144, 65–68. DOI: 10.1080/10426509908546183.
  • Andrews, R. IRCS Med. Sci. 1979, 7, 285.
  • Guerch, G.; Labarre, J. F.; Lahana, R.; Roques, R.; Sournies, F. An Answer to the Spiro versus Ansa Dilemma in Cyclophosphazenes: Part III. N3P3Cl5[HN(CH2)4NH]Cl5P3N3. A Serendipitous Two-Ring Bridged-Assembly Phosphazene. J. Mol. Struct. 1983, 99, 275–282. DOI: 10.1016/0022-2860(83)90030-3.
  • M.; Balcı.; C.; S.; Beşli, S. N.; N. Spiro Bridged Bis(Cyclotriphosphazene) Derivatives with Four Equivalent Chiral Centres: Synthesis, Characterization and Stereogenic Properties. İnorg. Chim. Acta 2019, 497, 119093. DOI: 10.1016/j.ica.2019.119093.
  • Işıklan, M.; Sonkaya, Ö.; Coşut, B.; Yeşilot, S.; Hökelek, T. Microwave-Assisted and Conventional Synthesis and Stereogenic Properties of Monospirocyclotriphosphazene Derivatives. Polyhedron 2010, 29, 1612–1618. DOI: 10.1016/j.poly.2010.02.002.
  • Beşli, S.; Coles, S. J.; Davies, D. B.; Eaton, R. J.; Hursthouse, M. B.; Kılıç, A.; Shaw, R. A.; Uslu, A.; Yeşilot, S. Chirality in Cyclotriphosphazenes with One Stereogenic Centre. Inorg. Chem. Commun. 2004, 7, 842–846. DOI: 10.1016/j.inoche.2004.04.023.
  • Coles, S. J.; Davies, D. B.; Hursthouse, M. B.; Kılıç, A.; Shaw, R. A.; Eaton, R. J.; Uslu, A. The Structural and Stereogenic Properties of Pentaerythritoxy-Bridged Cyclotriphosphazene Derivatives: Spiro–Spiro, Spiro–Ansa and Ansa–Ansa İsomers. Dalton Trans. 2006, 10, 1302–1312. DOI: 10.1039/B512854D.
  • Mutlu Balcı, C.; Beşli, S.; Yuksel, F. Synthesis and Stereogenic Properties of N,N-Spiro Bridged Bis (Cyclotriphosphazene) Compounds Containing Two Equivalent Chiral Centres. Polyhedron 2017, 137, 24–33. DOI: 10.1016/j.poly.2017.07.021.
  • Kumar, D.; Singh, J.; Elias, A. J. Chiral Multidentate Oxazoline Ligands Based on Cyclophosphazene Cores: Synthesis, Characterization and Complexation Studies. Dalton Trans. 2014, 43, 13899–13912. DOI: 10.1039/C4DT01741B.
  • Kumaraswamy, S.; Vijjulatha, M.; Muthiah, C.; Kumara Swamy, K. C.; Engelhardt, U. Synthesis, Reactivity and Structures of Spirocyclic Products Derived from Octachlorocyclotetraphosphazene: Comparison with Spirocyclic Cyclotriphosphazenes and Linear Phosphazenes. J. Chem. Soc., Dalton Trans. 1999, 6, 891–900. DOI: 10.1039/a807373b.
  • Kommana, P.; Kumaraswamy, S.; Kumara Swamy, K. C. A Novel Paddle-Wheel Shaped Spirocyclic Cyclotetraphosphazene from the Thermolysis of a P(III) Azide. Inorg. Chem. Commun. 2003, 6, 394–397. DOI: 10.1016/S1387-7003(02)00796-7.
  • Begeç, S. Synthesis and Characterization of New Spiro Cyclotriphosphazene Derivatives. Inorg. Chem. Commun. 2022, 140, 109457. DOI: 10.1016/j.inoche.2022.109457.
  • Desai, V. B.; Shaw, R. A.; Smith, B. C. Phosphorus–Nitrogen Compounds. Part XXXI. Reactions of Hexachlorocyclotriphosphazatriene with Aniline. J. Chem. Soc. (A) 1970, 0, 2023–2025. DOI: 10.1039/J19700002023.
  • Begeç, S.; Alataş, S.; Kılıç, A. The Reactions of Hexachlorocyclotriphosphazatriene with Pyridine Derivatives. Heteroatom. Chem. 2006, 17, 57–60. DOI: 10.1002/hc.20185.
  • Begeç, S.; Kılıç, A. Phenolysis of Hexachlorocyclotriphosphazatriene. Heteroatom. Chem. 2005, 16, 308–310. DOI: 10.1002/hc.20127.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.