336
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Phosphorus–nitrogen compounds: Part 60: Synthesis of hexaminomonoferrocenyl-spiro(N/O)cyclotetraphosphazenes: Spectral and electrochemical properties, tuning of redox feature, and antituberculosis activity

, ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 21-33 | Received 05 May 2022, Accepted 08 Jul 2022, Published online: 19 Jul 2022

References

  • Chakraborty, A.; Ahmed, N.; Chandrasekhar, V. Phosphazenes, Organophosphorus Chemistry; Royal Society of Chemistry, 2021; Vol. 50, pp 429–466. DOI: 10.1039/9781839163814-00429.
  • Uslu, A.; Yeşilot, S. Recent Advances in the Supramolecular Assembly of Cyclophosphazene Derivatives. Dalton Trans. 2021, 50, 2324–2341. DOI: 10.1039/D0DT04095A.
  • Tanrıkulu, G. İ.; Yakut Özgür, M.; Okumuş, A.; Kılıç, Z.; Hökelek, T.; Aydın, B.; Açık, L. Phosphorus-Nitrogen Compounds Part 47: The Conventional and Microwave-Assisted Syntheses of Dispirocyclotriphosphazene Derivatives with (4-Fluoro/4-Nitrobenzyl) Pendant Arms: Structural and Stereogenic Properties and DNA İnteractions. Inorg. Chim. Acta 2019, 490, 179–189. DOI: 10.1016/j.ica.2019.03.018.
  • Elmas, G. Syntheses and Structural Characterizations of 2-Pyridyl(N/O)Spirocyclotriphosphazene Derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2019, 194, 13–24. DOI: 10.1080/10426507.2018.1469490.
  • Elmas, G.; Kılıç, Z.; Çoşut, B.; Keşan, G.; Açık, L.; Çam, M.; Tunalı, B. Ç.; Türk, M.; Hökelek, T. Synthesis of Bis(2,2,3,3-Tetrafluoro-1,4-Butanedialkoxy)-2-Trans-6-Bis(4-Fluorobenzyl)Spiro Cyclotetraphosphazene: Structural Characterization, Biological Activity and DFT Studies. J. Chem. Crystallogr. 2021, 51, 235–250. 10.1007/s10870-020-00851-4.
  • Stewart, F. F. Phosphazenes, Organophosphorus Chemistry; Royal Society of Chemistry, 2015; Vol. 44, pp 397–430. DOI: 10.1039/9781782622765.
  • Elmas, G. The Reactions of 2-Trans-6-Bis(4-Fluorobenzyl)Spirocyclotetraphosphazene with Primary Amines: Spectroscopic and Crystallographic Characterizations. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 1224–1232. DOI: 10.1080/10426507.2017.1359595.
  • Elmas, G. Syntheses and Spectroscopic İnvestigations of 2-Pyridyl(N/N)Spiro Cyclotriphosphazenes. J. Turk. Chem. Soc. Sect. A: Chem. 2018, 5, 621–634. DOI: 10.18596/jotcsa.379971.
  • Medjdoub, L.; Mohammed, B. New Method for Nucleophilic Substitution on Hexachlorocyclotriphosphazene by Allylamine Using an Algerian Proton Exchanged Montmorillonite Clay (Maghnite-H+) as a Green Solid Catalyst. Bull. Chem. React. Eng. Catal. 2016, 11, 151–160. DOI: 10.9767/bcrec.11.2.541.151-160.
  • Elmas, G.; Okumuş, A.; Hökelek, T.; Kılıç, Z. Phosphorus-Nitrogen Compounds. Part 52. The Reactions of Octachlorocyclotetraphosphazene with Sodium 3-(N-Ferrocenylmethylamino)-1-Propanoxide: Investigations of Spectroscopic, Crystallographic and Stereogenic Properties. Inorg. Chim. Acta 2019, 497, 119106. DOI: 10.1016/j.ica.2019.119106.
  • Elmas, G.; Okumuş, A.; Kılıç, Z.; Çam, M.; Açık, L.; Hökelek, T. Phosphorus-Nitrogen Compounds. Part 40. The Syntheses of (4-Fluorobenzyl) Pendant Armed Cyclotetraphosphazene Derivatives: Spectroscopic, Crystallographic and Stereogenic Properties, DNA İnteractions and Antimicrobial Activities. Inorg. Chim. Acta 2018, 476, 110–122. DOI: 10.1016/j.ica.2018.02.025.
  • Palabıyık, D.; Mutlu Balcı, C.; Allen, C. W.; Beşli, S. Unexpected Formation of Ansa İsomers Enabled by Phosphazene Ring Flexibility in the Reactions of Cyclotetraphosphazene with 1,2-Ethanediol. Dalton Trans. 2021, 50, 6673–6681. DOI: 10.1039/D1DT00386K.
  • İbişoğlu, H.; Çiftçi, G. Y.; Kılıç, A.; Adem Tanrıverdi, E.; Ün, İ.; Dal, H.; Hökelek, T. Formation of Novel Spiro, Spiroansa and Dispiroansa Derivatives of Cyclotetraphosphazene from the Reactions of Polyfunctional Amines with Octachlorocyclotetraphosphazatetraene. J. Chem. Sci. 2009, 121, 125–135. DOI: 10.1007/s12039-009-0014-y.
  • Yıldırım, T.; Bilgin, K.; Çiftçi, G. Y.; Eçik, E. T.; Şenkuytu, E.; Uludağ, Y.; Tomak, L.; Kılıç, A. Synthesis, Cytotoxicity and Apoptosis of Cyclotriphosphazene Compounds as Anti-Cancer Agents. Eur. J. Med. Chem. 2012, 52, 213–220. DOI: 10.1016/j.ejmech.2012.03.018.
  • Çiftçi, G. Y.; Şenkuytu, E.; İncir, S. E.; Yuksel, F.; Ölçer, Z.; Yıldırım, T.; Kılıç, A.; Uludağ, Y. First Paraben Substituted Cyclotetraphosphazene Compounds and DNA İnteraction Analysis with a New Automated Biosensor. Biosens. Bioelectron. 2016, 80, 331–338. DOI: 10.1016/j.bios.2016.01.061.
  • Binici, A.; Elmas, G.; Okumuş, A.; Erden Tayhan, S.; Hökelek, T.; Açık, L.; Şeker, B. N.; Kılıç, Z. Phosphorus-Nitrogen Compounds. part 58. syntheses, Structural Characterizations and Biological Activities of 4-Fluorobenzyl-Spiro(N/O)Cyclotriphosphazene Derivatives. J. Biomol. Struct. Dyn. 2021. DOI: 10.1080/07391102.2021.2006084.
  • Elmas, G.; Okumuş, A.; Kılıç, Z.; Özbeden, P.; Açık, L.; Tunalı, B. Ç.; Türk, M.; Çerçi, N. A.; Hökelek, T. Phosphorus-Nitrogen Compounds. Part 48. Syntheses of the Phosphazenium Salts Containing 2-Pyridyl Pendant Arm: Structural Characterizations, Thermal Analysis, Antimicrobial and Cytotoxic Activity Studies. Indian J. Chem. Sec. A 2020, 59A, 533–550.
  • Selberg, S.; Pagano, T.; Tshepelevitsh, S.; Haljasorg, T.; Vahur, S.; Luik, J.; Saame, J.; Leito, I. Synthesis and Photophysics of a Series of Lipophilic Phosphazene‐Based Fluorescent İndicators. J. Phys. Org. Chem. 2019, 32, e3950. DOI: 10.1002/poc.3950.
  • Singh, R. K.; Kukrety, A.; Saxena, R. C.; Chouhan, A.; Jain, S. L.; Ray, S. S. Phosphazene-Based Novel Organo-İnorganic Hybrid Salt: Synthesis, Characterization and Performance Evaluation as Multifunctional Additive in Polyol. RSC Adv. 2017, 7, 13390–13397. DOI: 10.1039/C6RA26186H.
  • Mucur, S. P.; Canımkurbey, B.; Kavak, P.; Akbaş, H.; Karadağ, A. Charge Carrier Performance of Phosphazene-Based İonic Liquids Doped Hole Transport Layer in Organic Light-Emitting Diodes. Appl. Phys. A 2020, 126, 923, 1–14. DOI: 10.1007/s00339-020-04100-5.
  • Vinchhi, P.; Rawal, S. U.; Patel, M. M. Chapter 19-Biodegradable Hydrogels. Drug Deliv. Dev. Ther. Syst. 2021, 395–419. DOI: 10.1016/B978-0-12-819838-4.00012-2.
  • Haibin, G.; Shengdong, M.; Guirong, Q.; Xiong, L.; Li, Z.; Yanfei, Y.; Didier, A. Redox-Stimuli-Responsive Drug Delivery Systems with Supramolecular Ferrocenyl-Containing Polymers for Controlled Release. Coord. Chem. Rev. 2018, 364, 51–85. DOI: 10.1016/j.ccr.2018.03.013.
  • Lennox, A. J. J.; Nutting, J. E.; Stahl, S. S. Selective Electrochemical Generation of Benzylic Radicals Enabled by Ferrocene-Based Electron-Transfer Mediators. Chem. Sci. 2018, 9, 356–361. DOI: 10.1039/C7SC04032F.
  • Singh, S. K.; Kumar, V.; Drew, M. G. B.; Singh, N. Syntheses, Crystal Structures and Photoluminescent Properties of New Heteroleptic Ni(II) and Pd(II) Complexes of Ferrocene Functionalized Dithiocarbamate and Dipyrromethene Ligands. Inorg. Chem. Commun. 2013, 37, 151–154. DOI: 10.1016/j.inoche.2013.09.052.
  • Díaz-Ortiz, T. L.; Malavé-León, M.; Rivera-Claudio, M.; Castillo-Ramírez, J.; Cabrera-Martínez, C. R.; Brito-Gómez, R.; Tremont, R. J. Modification of Au Surfaces Using New Ferrocene Derivatives. Appl. Surf. Sci. 2008, 254, 1587–1592. DOI: 10.1016/j.apsusc.2007.07.068.
  • Ludwig, B. S.; Correia, J. D. G.; Kühn, F. E. Ferrocene Derivatives as Anti-İnfective Agents. Coord. Chem. Rev. 2019, 396, 22–48. DOI: 10.1016/j.ccr.2019.06.004.
  • Mahajan, A.; Kremer, L.; Louw, S.; Guérardel, Y.; Guéradel, Y.; Chibale, K.; Biot, C. Synthesis and in Vitro Antitubercular Activity of Ferrocene-Based Hydrazones. Bioorg. Med. Chem. Lett. 2011, 21, 2866–2868. DOI: 10.1016/j.bmcl.2011.03.082.
  • Babin, V. N.; Belousov, Y. A.; Borisov, V. I.; Gumenyuk, V. V.; Nekrasov, Y. S.; Ostrovskaya, L. A.; Sviridova, I. K.; Sergeeva, N. S.; Simenel, A. A.; Snegur, L. V. Ferrocenes as Potential Anticancer Drugs. Facts and Hypotheses. Russ. Chem. Bull. 2014, 63, 2405–2422. DOI: 10.1007/s11172-014-0756-7.
  • Elmas, G.; Okumuş, A.; Cemaloğlu, R.; Kılıç, Z.; Çelik, S. P.; Açık, L.; Tunalı, B. Ç.; Türk, M.; Çerçi, N. A.; Güzel, R.; Hökelek, T. Phosphorus-Nitrogen Compounds. Part 38. Syntheses, Characterizations, Cytotoxic, Antituberculosis and Antimicrobial Activities and DNA İnteractions of Spirocyclotetraphosphazenes with Bis-Ferrocenyl Pendant Arms. J. Organomet. Chem. 2017, 853, 93–106. DOI: 10.1016/j.jorganchem.2017.10.025.
  • Okumuş, A.; Elmas, G.; Cemaloğlu, R.; Aydın, B.; Binici, A.; Şimşek, H.; Açık, L.; Türk, M.; Güzel, R.; Kılıç, Z.; Hökelek, T. Phosphorus-Nitrogen Compounds. Part 35. Syntheses, Spectroscopic and Electrochemical Properties, Antituberculosis, Antimicrobial and Cytotoxic Activities of Mono-Ferrocenyl-Spirocyclotetraphosphazenes. New J. Chem. 2016, 40, 5588–5603. DOI: 10.1039/C6NJ00204H.
  • Tümer, Y.; Asmafiliz, N.; Zeyrek, C. T.; Kılıç, Z.; Açık, L.; Çelik, S. P.; Türk, M.; Çağdaş Tunalı, B.; Ünver, H.; Hökelek, T. Syntheses, Spectroscopic and Crystallographic Characterizations of Cis- and Trans-Dispirocyclic Ferrocenylphosphazenes: Molecular Dockings, Cytotoxic and Antimicrobial Activities. New J. Chem. 2018, 42, 1740–1756. DOI: 10.1039/C7NJ03643D.
  • Elmas, G.; Okumuş, A.; Koç, L. Y.; Soltanzade, H.; Kılıç, Z.; Hökelek, T.; Dal, H.; Açık, L.; Üstündağ, Z.; Dündar, D.; Yavuz, M. Phosphorus–Nitrogen Compounds. Part 29. Syntheses, Crystal Structures, Spectroscopic and Stereogenic Properties, Electrochemical İnvestigations, Antituberculosis, Antimicrobial and Cytotoxic Activities and DNA İnteractions of Ansa-Spiro-Ansa Cyclotetraphosphazenes. Eur. J. Med. Chem. 2014, 87, 662–676. DOI: 10.1016/j.ejmech.2014.10.005.
  • Güzel, R.; Ocak, Y. S.; Karuk, S. N.; Ersöz, A.; Say, R. Light Harvesting and Photo-İnduced Electrochemical Devices Based on Bionanocage Proteins. J. Power Sources 2019, 440, 227119. DOI: 10.1016/j.jpowsour.2019.227119.
  • Güzel, R.; Yediyıldız, F.; Ocak, Y. S.; Yılmaz, F.; Ersöz, A.; Say, R. Photosystem (PSII)-Based Hybrid Nanococktails for the Fabrication of BIO-DSSC and Photo-İnduced Memory Device. J. Photochem. Photobiol. A: Chem. 2020, 401, 112743. DOI: 10.1016/j.jphotochem.2020.112743.
  • Abd Elgani, R.; Hilo, M.; Abd Allah, M.; Al Hassan, A.; Abd Elhai, R. Impact of the Light İntensity Variation on the Performance of Solar Cell Constructed from (Muscovite/TiO2/Dye/Al). Nat. Sci. 2013, 05, 1069–1077. DOI: 10.4236/ns.2013.510131.
  • Koo, H. J.; Kim, Y. J.; Lee, Y. H.; Lee, W. I.; Kim, K.; Park, N. G. Nano-Embossed Hollow Spherical TiO2 as Bifunctional Material for High-Efficiency Dye-Sensitized Solar Cells. Adv. Mater. 2008, 20, 195–199. DOI: 10.1002/adma.200700840.
  • Chellamuthu, J.; Nagaraj, P.; Chidambaram, S. G.; Sambandam, A.; Muthupandian, A. Enhanced Photocurrent Generation in Bacteriorhodopsin Based Bio-Sensitized Solar Cells Using Gel Electrolyte. J. Photochem. Photobiol. B 2016, 162, 208–212. DOI: 10.1016/j.jphotobiol.2016.06.044.
  • Wei, H.; Luo, J. W.; Li, S. S.; Wang, L. W. Revealing the Origin of Fast Electron Transfer in TiO2-Based Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2016, 138, 8165–8174. DOI: 10.1021/jacs.6b03524.
  • O'Regan, B.; Lenzmann, F.; Muis, R.; Wienke, J. A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated P25 − TiO2 and CuSCN: Analysis of Pore Filling and IV Characteristics. Chem. Mater. 2002, 14, 5023–5029. DOI: 10.1021/cm020572d.
  • Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, A. B.; Grätzel, M. Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. J. Am. Chem. Soc. 2005, 127, 16835–16847. DOI: 10.1021/ja052467l.
  • Daeneke, T.; Mozer, A. J.; Uemura, Y.; Makuta, S.; Fekete, M.; Tachibana, Y.; Koumura, N.; Bach, U.; Spiccia, L. Dye Regeneration Kinetics in Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2012, 134, 16925–16928. DOI: 10.1021/ja3054578.
  • Daeneke, T.; Kwon, T. H.; Holmes, A. B.; Duffy, N. W.; Bach, U.; Spiccia, L. High-Efficiency Dye-Sensitized Solar Cells with Ferrocene-Based Electrolytes. Nat. Chem. 2011, 3, 211–215. DOI: 10.1038/nchem.966.
  • Binici, A.; Okumuş, A.; Elmas, G.; Kılıç, Z.; Ramazanoğlu, N.; Açık, L.; Şimşek, H.; Tunalı, B. Ç.; Türk, M.; Güzel, R.; Hökelek, T. Phosphorus–Nitrogen Compounds. Part 42. The Comparative Syntheses of 2-Cis-4-Ansa(N/O) and Spiro(N/O) Cyclotetraphosphazene Derivatives: Spectroscopic and Crystallographic Characterization, Antituberculosis and Cytotoxic Activity Studies. New J. Chem. 2019, 43, 6856–6873. DOI: 10.1039/C9NJ00577C.
  • Okumuş, A.; Elmas, G.; Kılıç, Z.; Binici, A.; Ramazanog˘lu, N.; Açık, L.; Çoşut, B.; Hökelek, T.; Güzel, R.; Tunalı, B. Ç.; et al. The Comparative Reactions of 2‐Cis‐4‐Ansa and Spiro Cyclotetraphosphazenes with Difunctional Ligands: Structural and Stereogenic Properties, Electrochemical, Antimicrobial and Cytotoxic Activity Studies. Appl. Organomet. Chem. 2021, 35, e6150. DOI: 10.1002/aoc.6150.
  • Binici, A.; Okumuş, A.; Yakut, M.; Elmas, G.; Kılıç, Z.; Koyunoğlu, D.; Açık, L.; Şimşek, H. Phosphorus-Nitrogen Compounds. Part 56. Comparative Syntheses and Spectral Properties of Multiheterocyclic 2-Cis-4-Ansa and Spiro-Ferrocenyl (N/O)Cyclotetraphosphazenes: Antituberculosis and Antimicrobial Activity and DNA İnteraction Studies. Phosphorus Sulfur Silicon Relat. Elem. 2022, 197, 18–29. DOI: 10.1080/10426507.2021.1986502.
  • Okumuş, A.; Akbaş, H.; Karadağ, A.; Aydın, A.; Kılıç, Z.; Hökelek, T. Antiproliferative Effects against A549, Hep3B and FL Cell Lines of Cyclotriphosphazene‐Based Novel Protic Molten Salts: Spectroscopic, Crystallographic and Thermal Results. Chem. Select. 2017, 2, 4988–4999. DOI: 10.1002/slct.201700497.
  • Bozkurt, B.; Elmas, G.; Yakut, M.; Okumuş, A.; Çerçi, N. A.; Zeyrek, C. T.; Kılıç, Z.; Açık, L.; Hökelek, T. Phosphorus-Nitrogen Compounds Part 59. The Syntheses of Tetrachloro and Tetraamino-2-Pyridylmethylspiro(N/N)Ethylenediaminocyclotriphosphazenes: Structural Characterization, Bioactivity, and Molecular Docking Studies. J. Chin. Chem. Soc. 2021, 69, 310–331. DOI: 10.1002/jccs.202100475.
  • Egemen, G.; Hayvalı, M.; Kılıç, Z.; Solak, A. O.; Üstündağ, Z. Phosphorus-Nitrogen Compounds Part 17: The Synthesis, Spectral and Electrochemical İnvestigations of Porphyrino-Phosphazenes. J. Porphyrins Phthalocyanines 2010, 14, 227–228. DOI: 10.1142/S1088424610001945.
  • Mutlu, Ö. F.; Binici, A.; Okumuş, A.; Elmas, G.; Çoşut, B.; Kılıç, Z.; Hökelek, T. Phosphorus–Nitrogen Compounds. Part 54. Syntheses of Chiral Amino-4-Fluorobenzyl-Spiro(N/O)Cyclotriphosphazenes: Structural and Stereogenic Properties. New J. Chem. 2021, 45, 12178–12192. DOI: 10.1039/D1NJ00934F.
  • Antimycobacterial Susceptibility Testing for Mycobacterium tuberculosis. Tentative Standard M24-T, National Committee for Clinical Laboratory Standards (NCCLS); Wayne, PA, 1995.
  • Susceptibility testing of mycobacteria, nocardia, and other aerobic actinomycetes, Approved standard M24-A, National Committee for Clinical Laboratory Standards (NCCLS), Wayne, PA, 2003.
  • Tauc, J. Optical Properties and Electronic Structure of Amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. DOI: 10.1016/0025-5408(68)90023-8.
  • Kromann, J. C.; Larsen, F.; Moustafa, H.; Jensen, J. H. Prediction of pKa Values Using the PM6 Semiempirical Method. PeerJ 2016, 4, e2335. DOI: 10.7717/peerj.2335.
  • Bockris, J. O. M.; Khan, S. U. M. Surface Electrochemistry-A Molecular Level Approach; Springer: New York, NY, 1993.
  • Boschloo, G.; Hagfeldt, A. Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells. Acc. Chem. Res. 2009, 42, 1819–1826. DOI: 10.1021/ar900138m.
  • Bruker program 1D WIN-NMR (release 6.0) and 2D WIN-NMR (release 6.1).
  • Clinical and Laboratory Standards Institute, M24-A2, Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes; Approved Standard-Second Edition, March 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.