101
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Box-Behnken design optimization of sulfate reduction from natural water by electrocoagulation process

ORCID Icon, , , &
Pages 164-171 | Received 21 Jun 2022, Accepted 05 Oct 2022, Published online: 14 Oct 2022

References

  • Nanchucheho, I.; Johnson, D. B. Hydrometallurgy Removal of Sulfate from Extremely Acidic Mine Waters Using Low pH Sul Fi Dogenic Bioreactors. Hydrometallurgy 2014, 150, 222–226. DOI: http://dx.doi.org/10.1016/j.hydromet.2014.04.025.
  • Filho, J.; Azevedo, A.; Etchepare, A.; Rubio, R. Removal of Sulfate Ions by Dissolved Air Flotation (DAF) following Precipitation and Flocculation. Int. J. Miner. Process. 2016, 149, 1–8. DOI: http://dx.doi.org/10.1016/j.minpro.2016.01.012.
  • Balintova, M.; Demcak, S.; Holub, M. Proceedings of the International Conference on Engineering Sciences and Technologies, Tatranská Štrba, High Tatras Mountains. Slovak Republic, 2015; pp. 239–244.
  • World Health Organization. Guidelines for Drinking-Water Quality, 4th ed., Guidel. I; World Health Organisation: Geneva, Switzerland, 2011.
  • Tang, W.; He, D.; Zhang, C.; Waite, T. D. Optimization of Sulfate Removal from Brackish Water by Membrane Capacitive Deionization (MCDI). Water Res. 2017, 121, 302–310. 10.1016/j.watres.2017.05.046.
  • Arahman, N.; Mulyati, S.; Lubis, M. R.; Takagi, R.; Matsuyama, H. Removal Profile of Sulfate Ion from Mix Ion Solution with Different Type and Configuration of Anion Exchange Membrane in Elctrodialysis. J. Water Process. Eng. 2017, 20, 173–179. DOI: 10.1016/j.jwpe.2017.10.007.
  • Silva, A. M.; Lima, R. M.; Leão, V. A. Mine Water Treatment with Limestone for Sulfate Removal. J. Hazard. Mater. 2012, 221–222, 45–55. DOI: 10.1016/j.jhazmat.2012.03.066.
  • Guimarães, D.; Leão, V. A. Batch and fixed-Bed Assessment of Sulphate Removal by the Weak Base Ion Exchange Resin Amberlyst A21. J. Hazard Mater. 2014, 280, 209–215. http://dx.doi.org/10.1016/j.jhazmat.2014.07.071.
  • Gomelya, M.; Trus, I.; Shabliy, T. Application of Aluminium Coagulants for the Removal of Sulphate from Mine Water. Chem. Chem. Technol. 2014, 8, 197–203. DOI: 10.23939/chcht08.02.197.
  • Fernando, W. A. M.; Ilankoon, I. M. S. K.; Syed, T. H.; Yellishetty, M. Challenges and Opportunities in the Removal of Sulphate Ions in Contaminated Mine Water: A Review. Miner. Eng. 2018, 117, 74–90. 10.1016/j.mineng.2017.12.004. DOI: 10.1016/j.mineng.2017.12.004.
  • Kuokkanen, V.; Kuokkanen, T.; Rämö, J.; Lassi, U. Recent Applications of Electrocoagulation in Treatment of Water and Wastewater — A Review. Green Sustain. Chem. 2013, 3, 89–121. DOI: 10.4236/gsc.2013.32013.
  • Linares-Hernández, I.; Barrera-Díaz, C.; Roa-Morales, G.; Bilyeu, B.; Ureña-Núñez, F. Influence of the Anodic Material on Electrocoagulation Performance. Chem. Eng. 2009, 148, 97–105. DOI: 10.1016/j.cej.2008.08.007.
  • Emamjomeh, M. M.; Sivakumar, M. Fluoride Removal by a Continuous Flow Electrocoagulation Reactor. J. Environ. Manage. 2009, 90, 1204–1212. DOI: 10.1016/j.jenvman.2008.06.001.
  • Nariyan, E.; Sillanpää, M.; Wolkersdorfer, C. Electrocoagulation Treatment of Mine Water from the Deepest Working European Metal Mine – Performance, Isotherm and Kinetic Studies. Sep. Purif. Technol. 2017, 177, 363–373. DOI: 10.1016/j.seppur.2016.12.042.
  • Vepsäläinen, M.; Selin, J.; Rantala, P.; Pulliainen, M.; Särkkä, H.; Kuhmonen, K.; Bhatnagar, A.; Sillanpää, M. Precipitation of Dissolved Sulphide in Pulp and Paper Mill Wastewater by Electrocoagulation. Environ. Technol. 2011, 32, 1393–1400. 10.1080/09593330.2010.536790.
  • Myers, R. H.; Montgomery, D. C. Response Surface Methodology: Process and Product Optimization Using Designed Experiments; John Wiley and Sons: New York, 1995.
  • Behbahani, M.; Moghaddam, M. R. A.; Arami, M. Techno-Economical Evaluation of Fluoride Removal by Electrocoagulation Process: Optimization through Response Surface Methodology. Desalination 2011, 271, 209–218. DOI: http://dx.doi.org/10.1016/j.desal.2010.12.033.
  • Thakur, L. S.; Mondal, P. Techno-Economic Evaluation of Simultaneous Arsenic and Fluoride Removal from Synthetic Groundwater by Electrocoagulation Process: optimization through Response Surface Methodology. Desalin. Water Treat. 2016, 57, 28847–28863. DOI: 10.1080/19443994.2016.1186564.
  • Chen, W. J.; Su, W. T.; Hsu, H. Y. Continuous Flow Electrocoagulation for MSG Wastewater Treatment Using Polymer Coagulants via Mixture-Process Design and Response-Surface Methods. J. Taiwan Inst. Chem. Eng. 2012, 43, 246–255. DOI: 10.1016/j.jtice.2011.10.003.
  • Daghrir, R.; Drogui, P.; Zaviska, F. Effectiveness of a Hybrid Process Combining Electro-Coagulation and Electro-Oxidation for the Treatment of Domestic Wastewaters Using Response Surface Methodology. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2013, 48, 308–318. DOI: 10.1080/10934529.2013.726840.
  • Chavalparit, O.; Ongwandee, M. Optimizing Electrocoagulation Process for the Treatment of Biodiesel Wastewater Using Response Surface Methodology. J. Environ. Sci. (China) 2009, 21, 1491–1496. DOI: 10.1016/S1001-0742(08)62445-6.
  • Zodi, S.; Potier, O.; Lapicque, F.; Leclerc, J.-P. Treatment of the Industrial Wastewaters by Electrocoagulation: Optimization of Coupled Electrochemical and Sedimentation Processes. Desalination 2010, 261, 186–190. DOI: 10.1016/j.desal.2010.04.024.
  • Garg, K. K.; Prasad, B. Development of Box Behnken Design for Treatment of Terephthalic Acid Wastewater by Electrocoagulation Process: Optimization of Process and Analysis of Sludge. J. Environ. Chem. Eng. 2016, 4, 178–190. DOI: 10.1016/j.jece.2015.11.012.
  • Tak, B.-Y.; Tak, B.-S.; Kim, Y.-J.; Park, Y.-J.; Yoon, Y.-H.; Min, G.-H. Optimization of Color and COD Removal from Livestock Wastewater by Electrocoagulation Process: Application of Box–Behnken Design (BBD). Min. J. Ind. Eng. Chem. 2015, 28, 307–315. DOI: 10.1016/j.jiec.2015.03.008.
  • Alwan, H. H.; Ali, A. A.; Makki, H. F. Optimization of Oxidative Desulfurization Reaction with Fe2O3 Catalyst Supported on Graphene Using Box-Behnken Experimental Method. Bull. Chem. React. Eng. Catal. 2020, 15, 175–185. DOI: 10.9767/bcrec.15.1.6670.175-185.
  • Ferreira, S. L. C.; Bruns, R. E.; Ferreira, H. S.; Matos, G. D.; David, J. M.; Brandão, G. C.; da Silva, E. G. P.; Portugal, L. A.; dos Reis, P. S.; Souza, A. S.; et al. Box-Behnken Design: An Alternative for the Optimization of Analytical Methods. Anal. Chim. Acta 2007, 597, 179–186. DOI: 10.1016/j.aca.2007.07.011.
  • Moussa, D. T.; El-Naas, M. H.; Nasser, M.; Al-Marri, M. J. A Comprehensive Review of Electrocoagulation for Water Treatment: Potentials and Challenges. J. Environ. Manage. 2017, 186, 24–41. DOI: 10.1016/j.jenvman.2016.10.032.
  • Zhao, H.; Liu, H.; Qu, J. Effect of pH on the Aluminum Salts Hydrolysis during Coagulation Process: formation and Decomposition of Polymeric Aluminum Species. J. Colloid Interface Sci. 2009, 330, 105–112. DOI: 10.1016/j.jcis.2008.10.020.
  • Majlesi, M.; Mohseny, S. M.; Sardar, M.; Golmohammadi, S.; Sheikhmohammadi, A. Improvement of Aqueous Nitrate Removal by Using Continuous Electrocoagulation/Electroflotation Unit with Vertical Monopolar Electrodes. Sustain. Environ. Res. 2016, 26, 287–290. DOI: 10.1016/j.serj.2016.09.002.
  • Cañizares, P.; Jimenez, C.; Martínez, F.; Saez, C.; Rodrigo, M. A. Study of the Electrocoagulation Process Using Aluminum and Iron Electrodes. Ind. Eng. Chem. Res. 2007, 46, 6189–6195. DOI: 10.1021/ie070059f.
  • Kobya, M.; Can, O. T.; Bayramoglu, M. Treatment of Textile Wastewaters by Electrocoagulation Using Iron and Aluminum Electrodes. J. Hazard Mater. 2003, 100, 163–178. DOI: 10.1016/s03043894(03)00102-x.
  • Holt, P. K.; Barton, G. W.; Wark, M.; Mitchell, C. A. A Quantitative Comparison between Chemical Dosing and Electrocoagulation. Colloid Surf. A-Physicochem. Eng. Asp. 2002, 211, 233–248. DOI: 10.1016/S0927-7757(02)00285-6.
  • Tir, M.; Moulai-Mostefa, N. Optimization of Oil Removal from Oily Wastewater by Electrocoagulation Using Response Surface Method. J. Hazard Mater. 2008, 158, 107–115. DOI: 10.1016/j.jhazmat.2008.01.051.
  • Gurses, A.; Yalcin, M.; Dogar, C. Electrocagulation of Some Reactive Dyes: A Statistical Investigation of Some Electrochemical Variables. Waste Manag. 2002, 22, 491–499. DOI: 10.1016/S0956-053X(02)00015-6.
  • Kobya, M.; Hiz, H.; Senturk, E.; Aydiner, C.; Demirbas, E. Treatment of Potato Chips Manufacturing Wastewater by Electrocoagulation. Desalination 2006, 190, 201–211. DOI: 10.1016/j.desal.2005.10.006.
  • Mouedhen, G.; Feki, M.; De, M.; Wery, P.; Ayedi, H. F. Behavior of Aluminum Electrodes in Electrocoagulation Process. J. Hazard. Mater. 2008, 150, 124–135. DOI: 10.1016/j.jhazmat.2007.04.090.
  • Kapinus, E. N.; Revelsky, I. A.; Ulogov, V. O.; Lyalikov, Y. A. Simultaneous Determination of Fluoride, Chloride, Nitrite, Bromide, Nitrate, Phosphate and Sulfate in Aqueous Solutions at 10 − 9 to 10 − 8% Level by Ion Chromatography. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2004, 800, 321–323. DOI: 10.1016/j.jchromb.2003.09.065.
  • Chibani, A.; Barhoumi, A.; Ncib, S.; Bouguerra, W.; Elaloui, E. Fluoride Removal from Synthetic Groundwater by Electrocoagulation Process: Parametric and Energy Evaluation. Desalin. Water Treat. 2019, 157, 100–109. DOI: 10.5004/dwt.2019.24087.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.