69
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and lipid-lowering effects of phospholipid-polyunsaturated fatty acids (PL-PUFA) in high fat diet induced obese mice

, , , , & ORCID Icon
Pages 246-251 | Received 04 Jul 2022, Accepted 12 Oct 2022, Published online: 31 Oct 2022

References

  • Du, Y.-X.; Chen, S.-N.; Zhu, H.-L.; Niu, X.; Li, J.; Fan, Y.-W.; Deng, Z.-Y. Consumption of Interesterified Medium- and Long-Chain Triacylglycerols Improves Lipid Metabolism and Reduces Inflammation in High-Fat Diet-Induced Obese Rats. J. Agric. Food Chem. 2020, 68, 8255–8262. DOI: 10.1021/acs.jafc.0c03103.
  • Benjamin, D. I.; Louie, S. M.; Mulvihill, M. M.; Kohnz, R. A.; Li, D. S.; Chan, L. G.; Sorrentino, A.; Bandyopadhyay, S.; Cozzo, A.; Ohiri, A.; et al. Inositol Phosphate Recycling Regulates Glycolytic and Lipid Metabolism That Drives Cancer Aggressiveness. ACS Chem. Biol. 2014, 9, 1340–1350. DOI: 10.1021/cb5001907.
  • Anjos, S.; Feiteira, E.; Cerveira, F.; Melo, T.; Reboredo, A.; Colombo, S.; Dantas, R.; Costa, E.; Moreira, A.; Santos, S.; et al. Lipidomics Reveals Similar Changes in Serum Phospholipid Signatures of Overweight and Obese Pediatric Subjects. J. Proteome Res. 2019, 18, 3174–3183. DOI: 10.1021/acs.jproteome.9b00249.
  • Kamleh, M. A.; McLeod, O.; Checa, A.; Baldassarre, D.; Veglia, F.; Gertow, K.; Humphries, S. E.; Rauramaa, R.; de Faire, U.; Smit, A. J.; et al. Increased Levels of Circulating Fatty Acids Are Associated with Protective Effects against Future Cardiovascular Events in Nondiabetics. J. Proteome Res. 2018, 17, 870–878. DOI: 10.1021/acs.jproteome.7b00671.
  • Rix, T.; A.; Dinesen, P.; Lundbye-Christensen, S.; Joensen, A. M.; Riahi, S.; Overvad, K.; Schmidt, E. B. Omega-3 Fatty Acids in Adipose Tissue and Risk of Atrial Fibrillation. Eur. J. Clin. Invest. 2022, 52, e13649. DOI: 10.1111/eci.13649.
  • Go, R. E.; Hwang, K. A.; Park, G. T.; Lee, H. M.; Lee, G. A.; Kim, C. W.; Jeon, S. Y.; Seo, J. W.; Hong, W. K.; Choi, K. C. Effects of Microalgal Polyunsaturated Fatty Acid Oil on Body Weight and Lipid Accumulation in the Liver of C57BL/6 Mice Fed a High Fat Diet. J. Biomed. Res. 2016, 30, 234–242. DOI: 10.7555/JBR.30.2016K0004.
  • Jimenez, C. Marine Natural Products in Medicinal Chemistry. ACS Med. Chem. Lett. 2018, 9, 959–961. DOI: 10.1021/acsmedchemlett.8b00368.
  • Nicholson, T.; Khademi, H.; Moghadasian, M. H. The Role of Marine n-3 Fatty Acids in Improving Cardiovascular Health: A Review. Food Funct. 2013, 4, 357–365. DOI: 10.1039/c2fo30235g.
  • Lordan, R.; Redfern, S.; Tsoupras, A.; Zabetakis, I. Inflammation and Cardiovascular Disease: Are Marine Phospholipids the Answer? Food Funct. 2020, 11, 2861–2885. DOI: 10.1039/c9fo01742a.
  • Xiang, X.-W.; Zhou, X.-L.; Wang, W.-J.; Zhou, Y.-F.; Zhou, X.-X.; Deng, S.-G.; Zheng, B.; Wen, Z.-S. Effect of Antarctic Krill Phospholipid (KOPL) on High Fat Diet-Induced Obesity in Mice. Food Res. Int. 2021, 148, 110456. DOI: 10.1016/j.foodres.2021.110456.
  • Shirouchi, B.; Nagao, K.; Inoue, N.; Ohkubo, T.; Hibino, H.; Yanagita, T. Effect of Dietary Omega 3 Phosphatidylcholine on Obesity-Related Disorders in Obese Otsuka Long-Evans Tokushima Fatty Rats. J. Agric. Food Chem. 2007, 55, 7170–7176. DOI: 10.1021/jf071225x.
  • Wu, X. L.; Schauss, A. G. Mitigation of Inflammation with Foods. J. Agric. Food Chem. 2012, 60, 6703–6717. DOI: 10.1021/jf3007008.
  • Fukunaga, K.; Hosomi, R.; Fukao, M.; Miyauchi, K.; Kanda, S.; Nishiyama, T.; Yoshida, M. Hypolipidemic Effects of Phospholipids (PL) Containing n-3 Polyunsaturated Fatty Acids (PUFA) Are Not Dependent on Esterification of n-3 PUFA to PL. Lipids 2016, 51, 279–289. DOI: 10.1007/s11745-016-4118-0.
  • Pietiläinen, K. H.; Sysi-Aho, M.; Rissanen, A.; Seppänen-Laakso, T.; Yki-Järvinen, H.; Kaprio, J.; Oresic, M. Acquired Obesity is Associated with Changes in the Serum Lipidomic Profile Independent of Genetic Effects - a Monozygotic Twin Study. PLoS One. 2007, 2, e218. DOI: 10.1371/journal.pone.0000218.
  • del Bas, J. M.; Caimari, A.; Rodriguez-Naranjo, M. I.; Childs, C. E.; Chavez, C. P.; West, A. L.; Miles, E. A.; Arola, L.; Calder, P. C. Impairment of Lysophospholipid Metabolism in Obesity: altered Plasma Profile and Desensitization to the Modulatory Properties of n-3 Polyunsaturated Fatty Acids in a Randomized Controlled Trial. Am. J. Clin. Nutr. 2016, 104, 266–279. DOI: 10.3945/ajcn.116.130872.
  • Hung, N. D.; Sok, D. E.; Kim, M. R. Prevention of 1-Palmitoyl Lysophosphatidylcholine-Induced Inflammation by Polyunsaturated Acyl Lysophosphatidylcholine. Inflamm. Res. 2012, 61, 473–483. DOI: 10.1007/s00011-012-0434-x.
  • Cantero, I.; Itziar Abete, I.; del Bas, J. M.; Caimari, A.; Arola, L.; Zulet, M. A.; Martinez, J. A. Changes in Lysophospholipids and Liver Status after Weight Loss: The RESMENA Study. Nutr. Metab. 2018, 15, 1–11. DOI: 10.1186/s12986-018-0288-5.
  • Chakravarthy, M. V.; Lodhi, I. J.; Yin, L.; Malapaka, R. R. V.; Xu, H. E.; Turk, J.; Semenkovich, C. F. Identification of a Physiologically Relevant Endogenous Ligand for PPAR Alfa in Liver. Cell 2009, 138, 476–488. DOI: 10.1016/j.cell.2009.05.036.
  • Li, Y.; Choi, M.; Cavey, G.; Daugherty, J.; Suino, K.; Kovach, A.; Bingham, N. C.; Kliewer, S. A.; Xu, H. E. Crystallographic Identification and Functional Characterization of Phospholipids as Ligands for the Orphan Nuclear Receptor Steroidogenic Factor-1. Mol. Cell. 2005, 17, 491–502. DOI: 10.1016/j.molcel.2005.02.002.
  • Leslie, M.; A.; Cohen, D. J. A.; Liddle, D. M.; Robinson, L. E.; Ma,.; D. W.; L. A Review of the Effect of Omega-3 Polyunsaturated Fatty Acids on Blood Triacylglycerol Levels in Normolipidemic and Borderline Hyperlipidemic Individuals. Lipids Health Dis. 2015, 14, 1–18. DOI: 10.1186/s12944-015-0049-7.
  • Wrzosek, M.; Zawadzka, Z.; Sawicka, A.; Bobrowska-Korczak, B.; Białek, A. ; Impact of Fatty Acids on Obesity-Associated Diseases andrRadical Weight Reduction. Obes. Surg. 2022, 32, 428–440. DOI: 10.1007/s11695-021-05789-w.
  • Ruzickova, J.; Rossmeisl, M.; Prazak, T.; Flachs, P.; Sponarova, J.; Veck, M.; Tvrzicka, E.; Bryhn, M.; Kopecky, J. Omega-3 PUFA of Marine Origin Limit Diet-Induced Obesity in Mice by Reducing Cellularity of Adipose Tissue. Lipids 2004, 39, 1177–1185. DOI: 10.1007/s11745-004-1345-9.
  • Siri-Tarino, P. W.; Sun, Q.; Hu, F. B.; Krauss, R. M. Saturated Fat, Carbohydrate, and Cardiovascular Disease. Am. J. Clin. Nutr. 2010, 91, 502–509. DOI: 10.3945/ajcn.2008.26285.
  • Nguo, K.; Huggins, C. E.; Truby, H.; Sinclair, A. J.; Clarke, R. E.; Bonham, M. P. No Effect of Saturated Fatty Acid Chain Length on Meal-Induced Thermogenesis in Overweight Men. Nutr. Res. 2018, 51, 102–110. DOI: 10.1016/j.nutres.2018.01.003.
  • Taylor, G. R. J.; Williams, C. M. Effects of Probiotics and Prebiotics on Blood Lipids. Br. J. Nutr. 1998, 80, S225–S230. DOI: 10.1017/S0007114500006073.[PMC].[9924289].
  • Bugger, H.; Zirlik, A. Anti-Inflammatory Strategies in Atherosclerosis. Hamostaseologie 2021, 41, 433–442. DOI: 10.1055/a-1661-0020.
  • Fang, H.; Zhang, Y.; P.; Xie, Q. L.; Huang, X.; Y.; Hong, Z. Syntheses and Biological Evaluation of Phosphoryl-Containing Polyunsaturated Fatty Acid Derivatives as Hypolipidemic Agents. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1075–1080. DOI: 10.1080/10426507.2016.1146275.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.