114
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

First investigation of the local environment of europium in a strontium phosphate glass using molecular dynamics simulations

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 262-271 | Received 29 Apr 2022, Accepted 12 Oct 2022, Published online: 25 Oct 2022

References

  • Kargozar, S.; Baino, F.; Hamzehlou, S.; Hill, R. G.; Mozafari, M. Bioactive Glasses: Sprouting Angiogenesis in Tissue Engineering. Trends Biotechnol. 2018, 36, 430–444. DOI: 10.1016/J.TIBTECH.2017.12.003.
  • Deepa, A. V.; Murugasen, P.; Muralimanohar, P.; Kumar, S. P. Optical Studies of Lanthanum Oxide Doped Phosphate Glasses. Optik (Stuttg) 2018, 160, 348–352. DOI: 10.1016/j.ijleo.2018.01.108.
  • Ramzi, Z.; Touhtouh, S.; Nachit, W.; Benkhouja, K.; Taibi, M.; Hajjaji, A. Investigation of Structural and Physical Properties of x SrO-(100-x) P2O5 Glasses. Mol. Cryst. Liq. Cryst. 2016, 627, 97–105. DOI: 10.1080/15421406.2015.1137137.
  • Hsu, C. K.; Lee, J. S.; Sheu, J. M.; Huang, C. W. Physical Properties of Calcium Phosphate Glasses with Various CaO/P2O5 Mole Ratios. Phosphorus Sulfur Silicon Relat. Elem. 1996, 109, 47–50. DOI: 10.1080/10426509608545087.
  • Silva, G. H.; Anjos, V.; Bell, M.; J. V.; Carmo, A. P.; Pinheiro, A. S.; Dantas, N. O. Eu3+ Emission in Phosphate Glasses with High UV Transparency. J. Lumin. 2014, 154, 294–297. DOI: 10.1016/j.jlumin.2014.04.043.
  • Elbashar, Y. H.; Moslem, S. S.; Hassan, H. H.; Rayan, D. A. Double Bandpass Filter and Dual Band Gap Study for NiO Doped into P2O5–ZnO–Na2O Glassy System. Phosphorus Sulfur Silicon Relat. Elem. 2021, 196, 61–70. DOI: 10.1080/10426507.2020.1800703.
  • Bouabdalli, E. M.; El Jouad, M.; Touhtouh, S.; Sadek, O.; Hajjaji, A. Structural Studies on Varied Concentrations of Europium Doped Strontium Phosphate Glasses. Mater. Today Proc. 2022 2022, 66, 349–352. DOI: 10.1016/j.matpr.2022.05.450.
  • Makhkhas, Y.; Aqdim, S.; Sayouty, E. H. Study of Sodium-Chromium-Iron-Phosphate Glass by XRD, IR, Chemical Durability and SEM. MSCE. 2013, 01, 1–6. DOI: 10.4236/msce.2013.13001.
  • Shih, P. Y. Thermal, Chemical and Structural Characteristics of Erbium-Doped Sodium Phosphate Glasses. Mater. Chem. Phys. 2004, 84, 151–156. DOI: 10.1016/j.matchemphys.2003.11.016.
  • Bouabdalli, E. M.; El Jouad, M.; Garmim, T.; Louardi, A.; Hartiti, B.; Monkade, M.; Touhtouh, S.; Hajjaji, A. Elaboration and Characterization of Ni and Al Co-Doped SnO2 Thin Films Prepared by Spray Pyrolysis Technique for Photovoltaic Applications. Materials Science and Engineering: B 2022, 286, 116044.doi:10.1016/j.mseb.2022.116044.
  • Klimesz, B.; Lisiecki, R.; Ryba-Romanowski, W. Sm3+-Doped Oxyfluorotellurite Glasses- Spectroscopic, Luminescence and Temperature Sensor Properties. J. Alloys Compd. 2019, 788, 658–665. DOI: 10.1016/j.jallcom.2019.02.215.
  • Bouabdalli, E. M.; El Jouad, M.; Garmim, T.; Louardi, A.; Monkade, M.; Touhtouh, S. Elaboration and Characterization of Ni and Al Co-Doped SnO2 Thin Films Prepared by Spray Pyrolysis Technique for Photovoltaic Applications. Available at SSRN, 2022 doi:10.2139/ssrn.4141072.
  • Tian, Y. M.; Shen, L. F.; Pun, E. Y. B.; Lin, H. High-Aluminum Phosphate Glasses for Single-Mode Waveguide-Typed Red Light Source. J. Non Cryst. Solids 2015, 426, 25–31. DOI: 10.1016/j.jnoncrysol.2015.06.015.
  • Chanthima, N.; Tariwong, Y.; Kaewkhao, J.; Sangwaranatee, N. W.; Sangwaranatee, N. Effect of Alkali Oxides on Luminescence Properties of Eu3+-Doped Aluminium Phosphate Glasses. Mater. Today Proc. 2019, 17, 1906–1913. DOI: 10.1016/j.matpr.2019.06.229.
  • Bouabdalli, E. M.; El Jouad, M.; Touhtouh, S.; Hajjaji, A. First Examination of the Influence of Y3+ Ions on the Structural, Physical and Optical Properties of Strontium Phosphate Glasses. Res. Square 2022, 1-26. DOI: 10.21203/rs.3.rs-2052185/v1.
  • Wajda, A.; Goldmann, W. H.; Detsch, R.; Grünewald, A.; Boccaccini, A. R.; Sitarz, M. Structural Characterization and Evaluation of Antibacterial and Angiogenic Potential of Gallium-Containing Melt-Derived and Gel-Derived Glasses from CaO-SiO2 System. Ceram. Int. 2018, 44, 22698–22709. DOI: 10.1016/j.ceramint.2018.09.051.
  • Wajda, A.; Goldmann, W. H.; Detsch, R.; Boccaccini, A. R.; Sitarz, M. Influence of Zinc Ions on Structure, Bioactivity, Biocompatibility and Antibacterial Potential of Melt-Derived and Gel-Derived Glasses from CaO-SiO2 System. J. Non Cryst. Solids 2019, 511, 86–99. DOI: 10.1016/j.jnoncrysol.2018.12.040.
  • Aravindan, S.; Rajendran, V.; Rajendran, N. Investigations on the Thermal and Elastic Properties of ZnO-Incorporated Phosphate Glasses and Glass Ceramics. Phosphorus Sulfur Silicon Relat. Elem. 2012, 187, 831–849. DOI: 10.1080/10426507.2011.649502.
  • Waclawska, I.; Szumera, M. Reactivity of Silicate–Phosphate Glasses in Soil Environment. J. Alloys Compd. 2009, 468, 246–253. DOI: 10.1016/j.jallcom.2007.12.093.
  • Wacławska, I.; Szumera, M.; Stoch, P.; Sitarz, M. Structural Role of Fe in the Soil Active Glasses. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2011, 79, 728–732. DOI: 10.1016/J.SAA.2010.08.045.
  • Szumera, M.; Wacławska, I. Effect of Molybdenum Addition on the Thermal Properties of Silicate-Phosphate Glasses. J. Therm. Anal. Calorim. 2012, 109, 649–655. DOI: 10.1007/s10973-012-2399-y.
  • Kuczek, J.; Jeleń, P.; Stoch, P.; Błachowski, A.; Wacławska, I.; Szumera, M. Raman and Mössbauer Studies of Iron Phosphate-Silicate Glasses. J. Mol. Struct. 2018, 1170, 82–89. DOI: 10.1016/j.molstruc.2018.05.034.
  • Sadek, O.; Touhtouh, S.; Bouabdalli, E. M.; Hajjaji, A. Development of a Protocol for the Rapid Identification of Solid Materials Using the Principal Component Analysis (ACP) Method: Case of Phosphate Fertilizers. Mater. Today Proc. 2022, 66, 402–407. DOI: 10.1016/j.matpr.2022.06.083.
  • Bohre, A.; Avasthi, K.; Pet’kov,.; V.; I. Vitreous and Crystalline Phosphate High Level Waste Matrices: Present Status and Future Challenges. J. Ind. Eng. Chem. 2017, 50, 1–14. DOI: 10.1016/j.jiec.2017.01.032.
  • Ojovan, M. I.; Lee, W. E.; Kalmykov, S. N. An Introduction to Nuclear Waste Immobilisation. Elsevier. 2019, DOI: 10.1016/C2017-0-03752-7.
  • Donald, I. W. Waste Immobilization in Glass and Ceramic Based Hosts: Radioactive, Toxic and Hazardous Wastes. John Wiley & Sons; 2010.
  • Zhong, H.; Chen, G.; Yao, L.; Wang, J.; Yang, Y.; Zhang, R. The White Light Emission Properties of Tm3+/Tb3+/Sm3+ Triply Doped SrO-ZnO-P2O5 Glass. J. Non Cryst. Solids 2015, 427, 10–15. DOI: 10.1016/j.jnoncrysol.2015.07.032.
  • Ramzi, Z.; Touhtouh, S.; Taibi, M.; Bettach, M.; Hajjaji, A.; Nachit, W.; Benkhouja, K. Synthesis and Characterization of New Amorphous Phases in Bi2O3-P2O5-SrO System. Int. J. Eng. Adv. Technol. 2014, 4, 55–57.
  • Brow, R. K. Review: The Structure of Simple Phosphate Glasses. J. Non Cryst. Solids 2000, 263–264, 1–28. DOI: 10.1016/S0022-3093(99)00620-1.
  • Han, L.; Zhang, Q.; Song, J.; Xiao, Z.; Qiang, Y.; Ye, X.; You, W.; Lu, A. A Novel Eu3+-Doped Phosphate Glass for Reddish Orange Emission: Preparation, Structure and Fluorescence Properties. J. Lumin. 2020, 221, 117041. DOI: 10.1016/j.jlumin.2020.117041.
  • Liang, X.; Yin, G.; Yang, S.; Lai, Y.; Wang, J. Lanthanum Oxide Effects on the Structure of Calcium Phosphate Glasses. Spectrosc. Lett. 2011, 44, 418–423. DOI: 10.1080/00387010.2011.574183.
  • Varshneya, A. K.; Mauro, J. C. Fundamentals of Inorganic Glasses. Elsevier. 2019. DOI: 10.1016/C2017-0-04281-7.
  • Hoppe, U. A Structural Model for Phosphate Glasses. J. Non Cryst. Solids 1996, 195, 138–147. DOI: 10.1016/0022-3093(95)00524-2.
  • Al-Hasni, B.; Mountjoy, G. Structural Investigation of Iron Phosphate Glasses Using Molecular Dynamics Simulation. J. Non Cryst. Solids 2011, 357, 2775–2779. DOI: 10.1016/j.jnoncrysol.2010.10.010.
  • Goj, P.; Stoch, P. Influence of CaO on Structural Features of Polyphosphate P2O5-Fe2O3-FeO Glasses by Molecular Dynamics Simulations. J. Non Cryst. Solids 2020, 537, 120014. DOI: 10.1016/j.jnoncrysol.2020.120014.
  • Goj, P.; Stoch, P. Molecular Dynamics Simulations of P2O5-Fe2O3-FeO-Na2O Glasses. J. Non Cryst. Solids 2018, 500, 70–77. DOI: 10.1016/j.jnoncrysol.2018.06.018.
  • Stoch, P.; Goj, P.; Ciecińska, M.; Stoch, A. Structural Features of 19Al2O3-19Fe2O3-62P2O5 Glass from a Theoretical and Experimental Point of View. J. Non Cryst. Solids 2019, 521, 119499. DOI: 10.1016/j.jnoncrysol.2019.119499.
  • Rao, K. J. Structural Chemistry of Glasses. Elsevier. 2002. DOI: 10.1016/b978-0-08-043958-7.x5017-1.
  • Brow, R. K.; Tallant, D. R.; Myers, S. T.; Phifer, C. C. The Short-Range Structure of Zinc Polyphosphate Glass. J. Non Cryst. Solids 1995, 191, 45–55. DOI: 10.1016/0022-3093(95)00289-8.
  • Fletcher, J. P.; Kirkpatrick, R. J.; Howell, D.; Risbud,.; S.; H. 31P Magic-Angle Spinning Nuclear Magnetic Resonance Spectroscopy of Calcium Phosphate Glasses. Faraday Trans. 1993, 89, 3297–3299. J DOI: 10.1039/ft9938903297.
  • Ma, L.; Brow, R. K. Structural Study of Na2O–FeO–Fe2O3–P2O5 Glasses by High-Pressure Liquid Chromatography. J. Non Cryst. Solids 2014, 387, 16–20. DOI: 10.1016/j.jnoncrysol.2013.12.011.
  • Smith, C. E.; Brow, R. K.; Montagne, L.; Revel, B. The Structure and Properties of Zinc Aluminophosphate Glasses. J. Non Cryst. Solids 2014, 386, 105–114. DOI: 10.1016/j.jnoncrysol.2013.11.042.
  • Sales, B. C.; Boatner, L. A.; Ramey, J. O. Chromatographic Studies of the Structures of Amorphous Phosphates: A Review. J. Non Cryst. Solids 2000, 263-264, 155–166. DOI: 10.1016/S0022-3093(99)00644-4.
  • Bouabdalli, E. M.; El Jouad, M.; Hajjaji, A.; Garmim, T.; Touhtouh, S. Synthesis and Characterization of Silicophosphate Glasses Doped with Europium. Mater. Today Proc. 2022, 66, 158–161. DOI: 10.1016/j.matpr.2022.04.299.
  • Gökçe, M. Development of Eu3+ Doped Bismuth Germanate Glasses for Red Laser Applications. J. Non Cryst. Solids 2019, 505, 272–278. DOI: 10.1016/j.jnoncrysol.2018.11.011.
  • El Jouad, M.; Bouabdalli, E. M.; Touhtouh, S.; Addou, M.; Ollier, N.; Sahraoui, B. Red Luminescence and UV Light Generation of Europium Doped Zinc Oxide Thin Films for Optoelectronic Applications. Eur. Phys. J. Appl. Phys. 2020, 91, 10501. DOI: 10.1051/epjap/2020200133.
  • Garmim, T.; Soussi, L.; Louardi, A.; Monkade, M.; Khaidar, M.; Zradba, A.; Erguig, H.; Bouabdali, E.; Mghaioiuini, R.; Elmlouky, A.; et al. Structural and Optical Characterization of Sprayed Mg and Ni co-Doped CdS Thin Films for Photovoltaic Applications. IOP Conf. Ser: Mater. Sci. Eng. 2020, 948, 012019. DOI: 10.1088/1757-899X/948/1/012019.
  • Maalej, O.; El Jouad, M.; Gaumer, N.; Chaussedent, S.; Boulard, B.; Ben Ameur, M. D.; Ben Tijani, M. D. Site Selection Spectroscopy in Eu3+-Doped Lanthanum Fluorozirconate Glass and Glass-Ceramic. J. Non Cryst. Solids 2015, 420, 48–54. DOI: 10.1016/j.jnoncrysol.2015.04.025.
  • Garmim, T.; Bouabdalli, E.; Soussi, L.; El Jouad, Z.; Mghaiouini, R.; Louardi, A.; Hartiti, B.; El Jouad, M.; Monkade, M. Opto-Electrical Properties of ni and mg co-Doped Cds Thin Films Prepared by Spin Coating Technique. Phys. Scr. 2021, 96, 045813. DOI: 10.1088/1402-4896/abe3c0.
  • Yao, L. Q.; Chen, G. H.; Cui, S. C.; Zhong, H. J.; Wen, C. Fluorescence and Optical Properties of Eu3+-Doped Borate Glasses. J. Non Cryst. Solids 2016, 444, 38–42. DOI: 10.1016/j.jnoncrysol.2016.04.039.
  • Bouabdalli, E. M.; El Jouad, M.; Garmim, T.; Touhtouh, S.; Louardi, A.; Monkade, M.; Hartiti, B. Preparation and Characterization of Nickel and Aluminum-Codoped SnO2 Thin Films for Optoelectronic Applications. Int. J. Photoenergy 2021, 2021, 1–12. DOI: 10.1155/2021/5556441.
  • Tischendorf, B. C.; Alam, T. M.; Cygan, R. T.; Otaigbe, J. U. The Structure and Properties of Binary Zinc Phosphate Glasses Studied by Molecular Dynamics Simulations. J. Non Cryst. Solids 2003, 316, 261–272. DOI: 10.1016/S0022-3093(02)01795-7.
  • Boiko, G. G.; Andreev, N. S.; Parkachev, A. V. Structure of Pyrophosphate 2ZnO · P2O5-2Na2O · P2O5 Glasses according to Molecular Dynamics Simulation. J. Non Cryst. Solids 1998, 238, 175–185. DOI: 10.1016/S0022-3093(98)00693-0.
  • Mountjoy, G. Molecular Dynamics, Diffraction and EXAFS of Rare Earth Phosphate Glasses Compared with Predictions Based on Bond Valence. J. Non Cryst. Solids 2007, 353, 2029–2034. DOI: 10.1016/j.jnoncrysol.2007.02.027.
  • Liang, J. J.; Cygan, R. T.; Alam, T. M. Molecular Dynamics Simulation of the Structure and Properties of Lithium Phosphate Glasses. J. Non Cryst. Solids 2000, 263–264, 167–179. DOI: 10.1016/S0022-3093(99)00632-8.
  • Tuheen, M. I.; Du, J. Structural Features and Rare Earth Ion Clustering Behavior in Lanthanum Phosphate and Aluminophosphate Glasses from Molecular Dynamics Simulations. J. Non Cryst. Solids 2022, 578, 121330. DOI: 10.1016/j.jnoncrysol.2021.121330.
  • Kokou, L.; Du, J. Short-and Medium-Range Structures of Cerium Aluminophosphate Glasses: A Molecular Dynamics Study. J. Non Cryst. Solids 2014, 403, 67–79. DOI: 10.1016/j.jnoncrysol.2014.07.014.
  • Goj, P.; Wajda, A.; Stoch, P. Development of a New sr-o Parameterization to Describe the Influence of Sro on Iron-Phosphate Glass Structural Properties Using Molecular Dynamics Simulations. Materials (Basel) 2021, 14, 4326. DOI: 10.3390/ma14154326.
  • Christie, J. K.; de Leeuw, N. H. Effect of Strontium Inclusion on the Bioactivity of Phosphate-Based Glasses. J. Mater. Sci. 2017, 52, 9014–9022. DOI: 10.1007/s10853-017-1155-x.
  • Kokou, L.; Du, J. Rare Earth Ion Clustering Behavior in Europium Doped Silicate Glasses: Simulation Size and Glass Structure Effect. J. Non Cryst. Solids 2012, 358, 3408–3417. DOI: 10.1016/j.jnoncrysol.2012.01.068.
  • Du, J.; Kokou, L.; Rygel, J. L.; Chen, Y.; Pantano, C. G.; Woodman, R.; Belcher, J. Structure of Cerium Phosphate Glasses: Molecular Dynamics Simulation. J. Am. Ceram. Soc. 2011, 94, 2393–2401. DOI: 10.1111/j.1551-2916.2011.04514.x.
  • Ainsworth, R. I.; Tommaso, D.; Di, Christie, J. K.; De Leeuw, N. H. Polarizable Force Field Development and Molecular Dynamics Study of Phosphate-Based Glasses. J. Chem. Phys. 2012, 137, 234502. DOI: 10.1063/1.4770295.
  • Jund, P.; Jullien, R. Computer Investigation of the Energy Landscape of Amorphous Silica. Phys. Rev. Lett. 1999, 83, 2210–2213. DOI: 10.1103/PhysRevLett.83.2210.
  • Tilocca, A.; De Leeuw, N. H. Structural and Electronic Properties of Modified Sodium and Soda-Lime Silicate Glasses by Car-Parrinello Molecular Dynamics. J. Mater. Chem. 2006, 16, 1950–1955. DOI: 10.1039/B517362K.
  • Bouabdalli, E. M.; El Jouad, M.; Hajjaji, A.; Touhtouh, S. First Investigation of the Effect of Strontium Oxide on the Structure of Phosphate Glasses Using Molecular Dynamics Simulations. Res. Square 2022, 1-18. DOI: 10.21203/rs.3.rs-1522777/v1.
  • Fan, G.; Diao, J.; Jiang, L.; Zhang, Z.; Xie, B. Molecular Dynamics Analysis of the Microstructure of the CaO-P2O5-SiO2 Slag System with Varying P2O5/SiO2 Ratios. Mater. Trans. 2015, 56, 655–660. DOI: 10.2320/matertrans.M2014363.
  • Todorov, I. T.; Smith, W.; Trachenko, K.; Dove, M. T. DL_POLY_3: New Dimensions in Molecular Dynamics Simulations via Massive Parallelism. J. Mater. Chem. 2006, 16, 1911–1918. DOI: 10.1039/b517931a.
  • Bush, I. J.; Todorov, I. T.; Smith, W. A DAFT DL_POLY Distributed Memory Adaptation of the Smoothed Particle Mesh Ewald Method. Comput. Phys. Commun. 2006, 175, 323–329. DOI: 10.1016/j.cpc.2006.05.001.
  • Rajaramakrishna, R.; Nijapai, P.; Kidkhunthod, P.; Kim, H. J.; Kaewkhao, J.; Ruangtaweep, Y. Molecular Dynamics Simulation and Luminescence Properties of Eu3+Doped Molybdenum Gadolinium Borate Glasses for Red Emission. J. Alloys Compd. 2020, 813, 151914. DOI: 10.1016/j.jallcom.2019.151914.
  • Gao, L. W.; Xia, X.; Bin, Xu, X. Q.; Chen, C. Q. Immobilization of Radioactive Fluoride Waste in Aluminophosphate Glass: A Molecular Dynamics Simulation. Nucl. Sci. Tech. 2018, 29, 92. DOI: 10.1007/s41365-018-0443-8.
  • Ben Slimen, F.; Haouari, M.; Ben Ouada, H.; Guichaoua, D.; Raso, P.; Bidault, X.; Turlier, J.; Gaumer, N.; Chaussedent, S. Investigation of the Local Environment of Eu3+ in a Silicophosphate Glass Using Site-Selective Spectroscopy and Molecular Dynamics Simulations. Opt. Mater. (Amst )2017, 64, 479–488. DOI: 10.1016/j.optmat.2017.01.002.
  • Priyanka, R.; Arunkumar, S.; Basavapoornima, C.; Mary Mathelane, R.; Marimuthu, K. Structural and Spectroscopic Investigations on Eu3+ Ions Doped Boro-Phosphate Glasses for Optical Display Applications. J. Lumi.n 2020, 220, 116964. DOI: 10.1016/j.jlumin.2019.116964.
  • Stoch, P.; Stoch, A. Structure and Properties of Cs Containing Borosilicate Glasses Studied by Molecular Dynamics Simulations. J. Non Cryst. Solids 2015, 411, 106–114. DOI: 10.1016/j.jnoncrysol.2014.12.029.
  • Ajili, M.; Castagné, M.; Turki, N. K. Study on the Doping Effect of Sn-Doped ZnO Thin Films. Superlattices Microstruct. 2013, 53, 213–222. DOI: 10.1016/j.spmi.2012.10.012.
  • Stoch, P.; Goj, P.; Wajda, A.; Stoch, A. Alternative Insight into Aluminium-Phosphate Glass Network from ab Initio Molecular Dynamics Simulations. Ceram. Int. 2021, 47, 1891–1902. DOI: 10.1016/j.ceramint.2020.09.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.