112
Views
0
CrossRef citations to date
0
Altmetric
Research articles

The effect of citric acid on the microstructure and activity of MoP phosphide for dry reforming of methane

ORCID Icon, , &
Pages 397-402 | Received 23 Sep 2022, Accepted 19 Nov 2022, Published online: 02 Dec 2022

References

  • Huang, K.; Miller, J. B.; Huber, G. W.; Dumesic, J. A.; Maravelias, C. T. A General Framework for the Evaluation of Direct Nonoxidative Methane Conversion Strategies. Joule 2018, 2, 349–365. DOI: 10.1016/j.joule.2018.01.001.
  • Yu, M.; Zhu, Y.; Lu, Y.; Tong, G.; Zhu, K.; Zhou, X. The Promoting Role of Ag in Ni-CeO2 Catalyzed CH4-CO2 Dry Reforming Reaction. Appl. Catal. B: Environ. 2015, 165, 43–56. DOI: 10.1016/j.apcatb.2014.09.066.
  • Usman, M.; Wan Daud, W. M. A.; Abbas, H. F. Dry Reforming of Methane: Influence of Process Parameters—A Review. Renew. Sustain. Energy Rev. 2015, 45, 710–744. DOI: 10.1016/j.rser.2015.02.026.
  • Liu, X.; Yan, J.; Mao, J.; He, D.; Yang, S.; Mei, Y.; Luo, Y. Inhibitor, Co-Catalyst, or Intermetallic Promoter? Probing the Sulfur-Tolerance of MoOx Surface Decoration on Ni/SiO2 during Methane Dry Reforming. Appl. Surf. Sci. 2021, 548, 149231. DOI: 10.1016/j.apsusc.2021.149231.
  • Arora, S.; Prasad, R. An Overview on Dry Reforming of Methane: Strategies to Reduce Carbonaceous Deactivation of Catalysts. RSC Adv. 2016, 6, 108668–108688. DOI: 10.1039/C6RA20450C.
  • Bu, K.; Deng, J.; Zhang, X.; Kuboon, S.; Yan, T.; Li, H.; Shi, L.; Zhang, D. Promotional Effects of B-Terminated Defective Edges of Ni/Boron Nitride Catalysts for Coking- and Sintering-Resistant Dry Reforming of Methane. Appl. Catal. B: Environ. 2020, 267, 118692. DOI: 10.1016/j.apcatb.2020.118692.
  • Turap, Y.; Wang, I.; Fu, T.; Wu, Y.; Wang, Y.; Wang, W. Co-Ni Alloy Supported on CeO2 as a Bimetallic Catalyst for Dry Reforming of Methane. Int. J. Hydrogen Energy 2020, 45, 6538–6548. DOI: 10.1016/j.ijhydene.2019.12.223.
  • Xie, Z.; Yan, B.; Kattel, S.; Lee, J. H.; Yao, S.; Wu, Q.; Rui, N.; Gomez, E.; Liu, Z.; Xu, W.; et al. Dry Reforming of Methane over CeO2-Supported Pt-Co Catalysts with Enhanced Activity. Appl. Catal. B: Environ. 2018, 236, 280–293. DOI: 10.1016/j.apcatb.2018.05.035.
  • Liu, W.; Li, L.; Zhang, X.; Wang, Z.; Wang, X.; Peng, H. Design of Ni-ZrO2@SiO2 Catalyst with Ultra-High Sintering and Coking Resistance for Dry Reforming of Methane to Prepare Syngas. J. CO2 Util. 2018, 27, 297–307. DOI: 10.1016/j.jcou.2018.08.003.
  • Sun, Y.; Zhang, G.; Xu, Y.; Zhang, R. Dry Reforming of Methane over Co-Ce-M/AC-N Catalyst: Effect of Promoters (Ca and Mg) and Preparation Method on Catalytic Activity and Stability. Int. J. Hydrogen Energy 2019, 44, 22972–22982. DOI: 10.1016/j.ijhydene.2019.07.010.
  • Fonseca, R.; Rabelo-Neto, R. C.; Simões, R. C. C.; Mattos, L. V.; Noronha, F. B. Pt Supported on Doped CeO2/Al2O3 as Catalyst for Dry Reforming of Methane. Int. J. Hydrogen Energy 2020, 45, 5182–5191. DOI: 10.1016/j.ijhydene.2019.09.207.
  • Liu, Z.; Zhang, F.; Rui, N.; Li, X.; Lin, L.; Betancourt, L. E.; Su, D.; Xu, W.; Cen, J.; Attenkofer, K.; et al. Highly Active Ceria-Supported Ru Catalyst for the Dry Reforming of Methane: In Situ Identification of Ruδ+-Ce3+ Interactions for Enhanced Conversion. ACS Catal. 2019, 9, 3349–3359. DOI: 10.1021/acscatal.8b05162.
  • Wu, J.; Qiao, L.-Y.; Zhou, Z.; Cui, G.; Zong, S.; Xu, D.; Ye, R.; Chen, R.; Si, R.; Yao, Y. Revealing the Synergistic Effects of Rh and Substituted La2B2O7 (B = Zr or Ti) for Preserving the Reactivity of Catalyst in Dry Reforming of Methane. ACS Catal. 2019, 9, 932–945. DOI: 10.1021/acscatal.8b03319.
  • Wu, W.; Liu, Q.; Shi, Y.; Yao, Z.; Ding, W.; Dou, B. Binary and Ternary Transition Metal Phosphides for Dry Reforming of Methane. React. Chem. Eng. 2020, 5, 719–727. DOI: 10.1039/D0RE00027B.
  • Cui, Y.; Liu, Q.; Yao, Z.; Dou, B.; Shi, Y.; Sun, Y. A Comparative Study of Molybdenum Phosphide Catalyst for Partial Oxidation and Dry Reforming of Methane. Int. J. Hydrogen Energy 2019, 44, 11441–11447. DOI: 10.1016/j.ijhydene.2019.03.170.
  • Yao, Z.; Luan, F.; Sun, Y.; Jiang, B.; Song, J.; Wang, H. Molybdenum Phosphide as a Novel and Stable Catalyst for Dry Reforming of Methane. Catal. Sci. Technol. 2016, 6, 7996–8004. DOI: 10.1039/C6CY00836D.
  • Sun, G.; Yang, Y.; Yao, Z.; Shi, Y.; Mao, W. Investigation on the Key Factors of MoP Catalysts Prepared by a Carbothermal Reduction Method for Dry Reforming of Methane. Catal. Sci. Technol. 2021, 11, 3818–3825. DOI: 10.1039/D1CY00169H.
  • Li, W.; Dhandapani, B.; Oyama, S. T. Molybdenum Phosphide: A Novel Catalyst for Hydrodenitrogenation. Chem. Lett. 1998, 27, 207–208. DOI: 10.1246/cl.1998.207.
  • Whiffen, V. M. L.; Smith, K. J.; Straus, S. K. The Influence of Citric Acid on the Synthesis and Activity of High Surface Area MoP for the Hydrodeoxygenation of 4-Methylphenol. Appl. Catal. A: Gen. 2012, 419–420, 111–125. DOI: 10.1016/j.apcata.2012.01.018.
  • Cheng, R.; Shu, Y.; Li, L.; Zheng, M.; Wang, X.; Wang, A.; Zhang, T. Synthesis and Characterization of High Surface Area Molybdenum Phosphide. Appl. Catal. A: Gen. 2007, 316, 160–168. DOI: 10.1016/j.apcata.2006.08.036.
  • Wang, R.; Smith, K. J. Hydrodesulfurization of 4,6-Dimethyldibenzothiophene over High Surface Area Metal Phosphides. Appl. Catal. A: Gen. 2009, 361, 18–25. DOI: 10.1016/j.apcata.2009.03.037.
  • Yao, Z.; Tong, J.; Qiao, X.; Jiang, J.; Zhao, Y.; Liu, D.; Zhang, Y.; Wang, H. Novel Synthesis of Dispersed Molybdenum and Nickel Phosphides from Thermal Carbonization of Metal- and Phosphorus-Containing Resins. Dalton Trans. 2015, 44, 19383–19391. DOI: 10.1039/c5dt02464a.
  • Yao, Z.; Wang, G.; Shi, Y.; Zhao, Y.; Jiang, J.; Zhang, Y.; Wang, H. One-Step Synthesis of Nickel and Cobalt Phosphide Nanomaterials via Decomposition of Hexamethylenetetramine-Containing Precursors. Dalton Trans. 2015, 44, 14122–14129. DOI: 10.1039/c5dt02319j.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.