201
Views
0
CrossRef citations to date
0
Altmetric
Review

Sulfur chemistry in action. New perspectives for organic synthesis

ORCID Icon
Pages 456-465 | Received 08 Nov 2022, Accepted 24 Dec 2022, Published online: 03 Feb 2023

References

  • Hoyle, C. E.; Bowman, C. N. Thiol-Ene Click Chemistry. Angew. Chem. Int. Ed. Engl. 2010, 49, 1540–1573. DOI: 10.1002/anie.200903924.
  • Cubbage, J. W.; Guo, Y.; McCulla, R. D.; Jenks, W. S. Thermolysis of Alkyl Sulfoxides and Derivatives: A Comparison of Experiment and Theory. J. Org. Chem. 2001, 66, 8722–8736. DOI: 10.1021/jo0160625.
  • Guignard, R. F.; Petit, L.; Zard, S. Z. A Method for the Contra-Thermodynamic Isomerization of Cyclic Trisubstituted Alkenes. Org. Lett. 2013, 15, 4178–4181. DOI: 10.1021/ol4018744.
  • Beletskaya, I. P.; Cheprakov, A. V. The Heck Reaction as a Sharpening Stone of Palladium Catalysis. Chem. Rev. 2000, 100, 3009–3066. DOI: 10.1021/cr9903048.
  • Cha, J. K.; Kulinkovich, O. G. The Kulinkovich Cyclopropanation of Carboxylic Acid Derivatives. Org. React. 2012, 77, 1–159.
  • Connon, S. J.; Blechert, S. Recent developments in Olefin Cross-Metathesis. Angew. Chem. Int. Ed. Engl. 2003, 42, 1900–1923. DOI: 10.1002/anie.200200556.
  • Doyle, M. P. Catalytic Methods for Metal Carbene Transformations. Chem. Rev 1986, 86, 919–939.
  • Kobayashi, S.; Jorgensen, A. K. Cycloaddition Reactions in Organic Synthesis; Wiley: Weinheim, Germany, 2002.
  • Radicals Encyclopedia of Radicals in Chemistry, Biology and Materials; Chatgilialoglu, C.; Studer, A., Eds.; Wiley-VCH: Weinheim, 2012.
  • (a) McCombie, S. W.; Quiclet-Sire, B.; Zard, S. Z. Reflections on the Mechanism of the Barton-McCombie Deoxygenation and on Its Consequences. Tetrahedron 2018, 74, 4969–4979. (b) For a review, see: McCombie, S. W.; Motherwell, W. B.; Tozer, M. J. The Barton–McCombie Reaction. Org. React. 2012, 77, 161–591. DOI: 10.1016/j.tet.2018.03.042.
  • (a) Zard, S. Z. The Genesis of the Reversible Radical Addition-Fragmentation-Transfer of Thiocarbonylthio Derivatives from the Barton-McCombie Deoxygenation. A Brief account and Some Mechanistic Observations. Aust. J. Chem. 2006, 59, 663–668. (b) Zard, S. Z. Discovery of the RAFT/MADIX Process. Mechanistic Insights and Polymer Chemistry Implications. Macromolecules 2020, 53, 8144–8159. DOI: 10.1021/acs.macromol.0c01441.
  • (a) Zard, S. Z. Radical Alliances: Solutions and Opportunities for Organic Synthesis. Helv. Chim. Acta 2019, 102, e1900134 ( DOI: 10.1002/hlca.201900134.). (b) Quiclet-Sire, B.; Zard, S. Z. On the Strategic Impact of the Degenerative Transfer of Xanthates on Synthetic Planning. Isr. J. Chem. 2017, 57, 202–217. (c) Quiclet-Sire, B.; Zard, S. Z. Fun with Radicals: Some New Perspectives for Organic Synthesis. Pure Appl. Chem. 2011, 83, 519–551.
  • Caine, D. In Comprehensive Organic Synthesis: Carbon-Carbon σ-Bond Formation; Trost, B. M., Fleming, I., Eds.; Pergamon: New York, 1991; Vol. 3.
  • Zard, S. Z. The Xanthate Route to Ketones. When the Radical is Better than the Enolate. Acc. Chem. Res. 2018, 51, 1722–1733.
  • Bacqué, E.; Pautrat, F.; Zard, S. Z. A Flexible Strategy for the Divergent Modification of Pleuromutilin. Chem. Commun. 2002, 2312–2313. DOI: 10.1039/B206568A.
  • Zeise, W. C. J. Chem. Phys. 1822, 35, 173.
  • Liard, A.; Quiclet-Sire, B.; Zard, S. Z. A Practical Method for the Reductive Cleavage of the Sulfide Bond in Xanthates. Tetrahedron Lett 1996, 37, 5877–5880.
  • (a) Han, S.; Zard, S. Z. A Modular Approach to Substituted Boc-Protected 3-Aminomethylpyrroles. Org. Lett. 2014, 16, 1992–1995. (b) Han, S.; Zard, S. Z. A Convergent Route to Substituted Azetidines and to Boc-Protected 4-Aminomethylpyrroles. Tetrahedron 2015, 71, 3680–3689.
  • (a) Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. Cs. Hypophosphorous Acid and Its Salts - New Reagents for Radical Chain Deoxygenation, Dehalogenation and Deamination. Tetrahedron Lett. 1992, 33, 5709–5712. (b) Boivin, J.; Jrad, R.; Juge, S.; Nguyen, V. T. On the Reduction of S-Alkyl-Thionocarbonates (Xanthates) with Phosphorus Compounds. Org. Lett. 2003, 5, 1645–1648. DOI: 10.1016/0040-4039(92)89012-2.
  • Denieul, M.-P.; Quiclet-Sire, B.; Zard, S. Z. Trifluoroacetonyl Radicals: A Versatile Approach to Trifluoromethyl Ketones. Chem. Commun. 1996, 2511–2512. DOI: 10.1039/cc9960002511.
  • Judd, T. C.; Brown, D. B. Access to Substituted Trifluoromethyl Ketones Using the Versatile Synthetic Intermediate (E)-1,1-Dimethyl-2-(1,1,1-Trifluoropropan-2-Ylidene)Hydrazine. Tetrahedron Lett. 2017, 58, 4455–4458.
  • Quiclet-Sire, B.; Yanagisawa, Y.; Zard, S. Z. A Direct, Versatile Route to Functionalized Trialkoxysilanes. Chem. Commun. (Camb) 2014, 50, 2324–2326. DOI: 10.1039/c3cc48570f.
  • (a) Ciriminna, R.; Fidalgo, A.; Pandarus, V.; Béland, F.; Ilharco, L. M.; Pagliaro, M. The Sol − Gel Route to Advanced Silica-Based Materials and Recent Applications. Chem. Rev. 2013, 113, 8, 6592–6620. (b) Cordes, D. B.; Lickiss, P. D.; Rataboul, F. Recent Developments in the Chemistry of Cubic Polyhedral Oligosilsesquioxanes. Chem. Rev. 2010, 110, 2081–2173. (c) Llusar, M.; Sanchez, C. Inorganic and Hybrid Nanofibrous Materials Templated with Organogelators. Chem. Mater. 2008, 20, 782–820. (d) Hu, L.-C.; Shea, K. J. Organo–silica hybrid functional nanomaterials: how do organic bridging groups and silsesquioxane moieties work hand-in-hand? Chem. Soc. Rev. 2011, 40, 688–695. (e) Zou, H.; Wu, S.; Shen, J. Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications. Chem. Rev. 2008, 108, 3893–3957. (f) Kanamori, K.; Nakanishi, K. Controlled pore formation in organotrialkoxysilane-derived hybrids: from aerogels to hierarchically porous monoliths. Chem. Soc. Rev. 2011, 40, 754–770. (g) Descalzo, A. B.; Martínez-Máñez, R.; Sancenón, F.; Hoffmann, K.; Rurack, K. The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Angew. Chem. Int. Ed. 2006, 45, 5924–5948. (h) Wight, A. P.; Davis, M. E. Design and Preparation of Organic − Inorganic Hybrid Catalysts. Chem. Rev. 2002, 102, 3589–3614. (i) Lu, Z.-L.; Lindner, E.; Mayer, H. A. Applications of Sol-Gel-Processed Interphase Catalysts. Chem. Rev. 2002, 102, 3543–3578. (j) Onclin, S.; Ravoo, B. J.; Reinhoudt, D. N. Engineering Silicon Oxide Surfaces Using Self-Assembled Monolayers. Angew. Chem., Int. Ed. 2005, 44, 6282–6304. (k) Ulman, A. Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 1996, 96, 1533–1554.
  • de Greef, M.; Zard, S. Z. A Unified, Radical Based Approach for the Synthesis of Spiroketals. Org. Lett. 2007, 9, 1773–1776. DOI: 10.1021/ol070488+.
  • Bergeot, O.; Corsi, C.; El Qacemi, M.; Zard, S. Z. S-(3-Chloro-2-Oxo-Propyl)-O-Ethyl Xanthate: A Linchpin Radical Coupling Agent for the Synthesis of Heterocyclic and Polycyclic Compounds. Org. Biomol. Chem. 2006, 4, 278–290. DOI: 10.1039/b514509k.
  • Li, J.-J. Name Reactions in Heterocyclic Chemistry; Wiley Interscience: New Jersey, 2005, Vol 1&2.
  • Quiclet-Sire, B.; Zard, S. Z. Powerful Carbon-Carbon Bond Forming Reactions Based on a Novel Radical Exchange Process. Chemistry 2006, 12, 6002–6016. DOI: 10.1002/chem.200600510.
  • Dorokhov, V. S.; Quiclet-Sire, B.; Zard, S. Z. A Route to 5,5-Dithiospiroketals and to Long Chain Monomers from the Biomass. Org. Lett 2022, 24, 2878–2882.
  • Anthore-Dalion, L.; Liu, Q.; Zard, S. Z. A Radical Bidirectional Fragment Coupling Route to Unsymmetrical Ketones. J. Am. Chem. Soc. 2016, 138, 8404–8407. DOI: 10.1021/jacs.6b05344.
  • (a) Benetti, S.; Romagnoli, R.; De Risi, C.; Spalluto, G.; Zanirato, V. Mastering.beta.-Keto Esters. Chem. Rev. 1995, 95, 1065–1114. (b) Casiraghi, G.; Battistini, L.; Curti, C.; Rassu, G.; Zanardi, F. The Vinylogous Aldol and Related Addition Reactions: Ten Years of Progress. Chem. Rev. 2011, 111, 3076–3154. (c) Casiraghi, G.; Zanardi, F.; Appendino, G.; Rassu, G. The Vinylogous Aldol Reaction: A Valuable, yet Understated Carbon − Carbon Bond-Forming Maneuver. Chem. Rev. 2000, 100, 1929–1972.
  • Zard, S. Z. New Syntheses of Alkynes: A Tale of Serendipity and Design. Chem. Commun. 2002, 1555–1563. DOI: 10.1039/b203383f.
  • Anthore, L.; Li, S.; White, L. V.; Zard, S. Z. A Radical Solution to the Alkylation of the Highly Base-Sensitive 1,1-Dichloroacetone. Application to the Synthesis of Z-Alkenoates and E, E-Dienoates. Org. Lett. 2015, 17, 5320–5323.
  • (a) Anthore, L.; Zard, S. Z. Chemoselective Reduction: Xanthates as Traceless Precursors of Polyfunctionalized α,α-Dichloroketones. Org. Lett. 2017, 19, 5545–5548. (b) Spiegel, D. A.; Wiberg, K. B.; Schacherer, L. N.; Medeiros, M. R.; Wood, J. L. J. Am. Chem. Soc. 2005, 127, 12513–12515. (c) Medeiros, M. R.; Schacherer, L. N.; Spiegel, D. A.; Wood, J. L. Org. Lett. 2007, 9, 4427–4429. (d) Boivin, J.; Nguyen, V. T. Beilstein J. Org. Chem. 2007, 3, 45. (e) Allais, F.; Boivin, J.; Nguyen, V. T. Beilstein J. Org. Chem. 2007, 3, 46. A similar System Has Also Been Developed by Renaud Using Methanol instead of Water: (f) Pozzi, D.; Scanlan, E. M.; Renaud, P. J. Am. Chem. Soc. 2005, 127, 14204–14205.
  • Quiclet-Sire, B.; Zard, S. Z. A Convenient, High Yielding Cleavage of the Thiocarbonyl Group in Xanthates. Bull. Korean Chem. Soc 2010, 31, 543–544.
  • (a) Verhe, R.; De Buyck, L.; De Kimpe, N.; Kudesia, V. P.; Schamp, N. Favorskii-Type Rearrangement of Chlorinated Acetylacetone Monomethyl Enol Ethers. Presumptive Evidence for a Cyclopropane Dimethyl Acetal Intermediate. J. Org. Chem. 1977, 42, 1256–1258. (b) Schamp, N.; De Kimpe, N.; Coppens, W. The Favorskii Rearrangement of Dichlorinated Methylketones. Tetrahedron 1975, 31, 2081–2087. (c) Schamp, N.; Coppens, W. On the Favorskii Rearrangememt of Dichloromethylketones. Tetrahedron Lett. 1967, 8, 2697–2699.
  • Corbet, M.; de Greef, M.; Zard, S. Z. A Highly Conjunctive β-Keto Phosphonate: Application to the Synthesis of Pyridine Alkaloids Xestamines C, E, and H. Org. Lett 2008, 10, 253–256.
  • Goh, K. K. K.; Kim, S.; Zard, S. Z. A Free-Radical Variant for the Synthesis of Functionalized 1,5-Diketones. Org. Lett. 2013, 15, 4818–4821. DOI: 10.1021/ol402213k.
  • Selected monographs and books:(a) Hall, D. G., Ed. Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, Vols. 1 and 2; Wiley-VCH: New York, 2011. (b) Davidson, M. G., Hughes, A. K., Marder, T. B., Wade, K., Eds. Contemporary Boron Chemistry; Royal Society of Chemistry: Cambridge, 2000. (c) Hemming, D.; Fritzemeier, R.; Westcott, S. A.; Santos; W. L.; Steel, P. G. Copper-boryl Mediated Organic Synthesis. Chem. Soc. Rev. 2018, 47, 7477–7494. (d) Akgun, B.; Hall, D. G. Boronic Acids as Bioorthogonal Probes for Site- Selective Labeling of Proteins. Angew. Chem. Int. Ed. 2018, 57, 13028–13044.
  • (a) Lopez-Ruiz, H.; Zard, S. Z.; Huang, Q.; Zard, S. Z. A Flexible Access to Highly Functionalised Boronates. A Radical Fragment Coupling Route to Geminal Bis(Boronates). Chem. Commun 2001, 2018, 20, 2618–2619. b Org. Lett. 5304–5308.
  • Lamb, R.; Revil-Baudard, V. L.; Zard, S. Z. A Direct Approach to Orthogonally Protected α-Amino-Aldehydes. Org. Lett. 2019, 21, 6352–6356. DOI: 10.1021/acs.orglett.9b02237.
  • Chen, X.; Zard, S. Z. A Convergent Route to β-Amino Acids and to β-Heteroarylethylamines: An Unexpected Vinylation Reaction. Org. Lett. 2020, 22, 3628–3632. DOI: 10.1021/acs.orglett.0c01087.
  • Barbier, F.; Pautrat, F.; Quiclet-Sire, B.; Zard, S. Z. A Mild Radical Exchange Reaction of Xanthates with Bromine. Synlett 2002, 811–813. DOI: 10.1055/s-2002-25343.
  • Calculations for borylmethyl radical H2BCH2• give a radical stabilization energy (RSE) value of 10-11 kcal/mol, just slightly less than that of a benzyl radical (RSE = 14-15 kcal/mol). Oxygen substitutents reduce this stabilization to about 6-7 kcal/mol with. See: (a) Henry, D. J.; Parkinson, C. J.; Mayer, P. M.; Radom, L. Bond Dissociation Energies and Radical Stabilization Energies Associated with Substituted Methyl Radicals. J. Phys. Chem. A 2001, 105, 6750–6756. (b) Walton, J. C.; McCarroll, A. J.; Chen, Q.; Carboni, B.; Nziengui, R. The Influence of Boryl Substituents on the Formation and Reactivity of Adjacent and Vicinal Free Radical Centers. J. Am. Chem. Soc. 2000, 122, 5455–5463. (c) Coolidge, M. B.; Borden, W. T. Ab Initio Calculations of the Effects of Substituents on the Stabilization of Silyl Radicals versus Methyl Radicals. J. Am. Chem. Soc. 1988, 110, 2298–2299. (d) Pasto, D. J. Radical Stabilization Energies of Disubstituted Methyl Radicals. A Detailed Theoretical Analysis of the Captodative Effect. J. Am. Chem. Soc. 1988, 110, 8164–8175.
  • Quiclet-Sire, B.; Zard, S. Z. Radical Instability in Aid of Efficiency. A Powerful Route to Highly Functional MIDA Boronates. J. Am. Chem. Soc. 2015, 137, 6762–6765. DOI: 10.1021/jacs.5b03893.
  • Huang, Q.; Michalland, J.; Zard, S. Z. Alternating Radical Stabilities. A Convergent Route to Terminal and Internal Boronates. Angew. Chem. Int. Ed. Engl. 2019, 58, 16936–16942. DOI: 10.1002/anie.201906497.
  • Sun, J.; Perfetti, M. T.; Santos, W. L. A Method for the Deprotection of Alkylpinacolyl Boronate Esters. J. Org. Chem 2011, 76, 3571–3575.
  • Michalland, J.; Zard, S. Z. A Modular Access to 1,2- and 1,3-Disubstituted Cyclobutylboronic Esters by Consecutive Radical Additions. Angew. Chem. Int. Ed 2022, 61, e202113333. DOI: 10.1002/anie.202113333.
  • (a) Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chem. Rev. 1995, 95, 2457–2483. (b) Koshvandi, A. T. K.; Heravi, M. M.; Momeni, T. Current Applications of Suzuki–Miyaura Coupling Reaction in the Total Synthesis of Natural Products: An Update. Appl. Organomet. Chem. 2018, 32, e4210. (c) Brown, D. G.; Boström, J. Analysis of past and Present Synthetic Methodologies on Medicinal Chemistry: Where Have All the New Reactions Gone?: Miniperspective. J. Med. Chem. 2016, 59, 4443–4458.
  • Michalland, J.; Zard, S. Z. A Convergent, Stereoselective Route to Trisubstituted Alkenyl Boronates. Org. Lett. 2021, 23, 8018–8022. DOI: 10.1021/acs.orglett.1c03022.
  • Debien, L.; Quiclet-Sire, B.; Zard, S. Z. Allylic Alcohols: Ideal Radical Allylating Agents? Acc. Chem. Res. 2015, 48, 1237–1253. DOI: 10.1021/acs.accounts.5b00019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.