102
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A Box-Behnken design-based chemometric approach to optimize the removal of phosphate ions from water using Punica granatum shells

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 632-644 | Received 19 Oct 2022, Accepted 07 Jan 2023, Published online: 06 Feb 2023

References

  • Sands, R. D.; Jones, C. A.; Marshall, E. Global Drivers of Agricultural Demand and Supply. Int. Food Consum. Patterns Glob. Drivers Agric. Prod. 2015, 105–164.
  • Wu, Y.; Wang, E.; Miao, C. Fertilizer Use in China: The Role of Agricultural Support Policies. Sustainability 2019, 11, 4391. DOI: 10.3390/su11164391.
  • Cooper, J.; Lombardi, R.; Boardman, D.; Carliell-Marquet, C. Resources, Conservation and Recycling the Future Distribution and Production of Global Phosphate Rock Reserves. Resources, Conserv. Recycl. 2011, 57, 78–86. DOI: 10.1016/j.resconrec.2011.09.009.
  • Weikard, H.; Seyhan, D. Distribution of Phosphorus Resources between Rich and Poor Countries : The Effect of Recycling. Ecol. Econ. 2009, 68, 1749–1755. DOI: 10.1016/j.ecolecon.2008.11.006.
  • Lv, L.; Sun, P.; Wang, Y.; Du, H.; Gu, T. Phosphate Removal and Recovery with Calcined Layered Double Hydroxides as an Adsorbent. Phosphorus Sulfur Silicon Rel. Elem. 2008, 183, 519–526. DOI: 10.1080/10426500701761730.
  • Jurado, I. V.; Paese, G.; Schneider, I. H.; Féris, L. A. Phosphate Removal from Aqueous Solutions Using Natural and Thermic Treated Dolomites: Equilibrium, Kinetic, and Thermodynamic. Int. J. Environ. Sci. Technol. 2022, 19, 1739–1752. DOI: 10.1007/s13762-021-03197-2.
  • Xie, Y.; Huang, J.; Wang, H.; Lv, S.; Jiang, F.; Pan, Z.; Liu, J. Chemosphere Simultaneous and Efficient Removal of Fluoride and Phosphate in Phosphogypsum Leachate by Acid-Modified Sulfoaluminate Cement. Chemosphere 2022, 305, 135422. DOI: 10.1016/j.chemosphere.2022.135422.
  • Liu, D.; Huang, J.; Wu, D.; Liu, Y.; Zhang, R.; Chen, S. Efficient Removal of Phosphate by Nitrogen and Oxygen-Rich Polyethyleneimine Composite. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 646, 129007. DOI: 10.1016/j.colsurfa.2022.129007.
  • Zong, Y.; Li, Y.; Jin, X.; Shang, Y.; Jin, P.; Wang, X. C. Enhanced Phosphate Removal by Coral Reef-like Flocs: Coagulation Performance and Mechanisms. Sep. Purif. Technol. 2022, 299, 121690. DOI: 10.1016/j.seppur.2022.121690.
  • Ai, H.; Li, X.; Chen, C.; Xu, L.; Fu, M. L.; Sun, W.; Yuan, B. Immobilization of β-FeOOH Nanomaterials on the Basalt Fiber as a Novel Porous Composite to Effectively Remove Phosphate from Aqueous Solution. Colloids Surf., A 2022, 632, 127815. DOI: 10.1016/j.colsurfa.2021.127815.
  • Park, J. Y.; Lee, J.; Go, G. M.; Jang, B.; Cho, H. B.; Choa, Y. H. Removal Performance and Mechanism of anti-Eutrophication Anions of Phosphate by CaFe Layered Double Hydroxides. Appl. Surf. Sci. 2021, 548, 149157. DOI: 10.1016/j.apsusc.2021.149157.
  • Wen, S. L.; Lu, Y. H.; Luo, C. Y.; An, S. L.; Dai, J. R.; Liu, Z. W.; Zhong, J. C.; Du, Y. X. Adsorption of Humic Acids to Lake Sediments: Compositional Fractionation, Inhibitory Effect of Phosphate, and Implications for Lake Eutrophication. J. Hazard. Mater. 2022, 433, 128791. DOI: 10.1016/j.jhazmat.2022.128791.
  • Awual, M. R. Efficient Phosphate Removal from Water for Controlling Eutrophication Using Novel Composite Adsorbent. J. Clean. Prod. 2019, 228, 1311–1319. DOI: 10.1016/j.jclepro.2019.04.325.
  • Giachelli, C. M. The Emerging Role of Phosphate in Vascular Calcification. Kidney Int. 2009, 75, 890–897. DOI: 10.1038/ki.2008.644.
  • Holden, R. M.; Hétu, M.-F.; Li, T. Y.; Ward, E.; Couture, L. E.; Herr, J. E.; Christilaw, E.; Adams, M. A.; Johri, A. M. The Heart and Kidney : Abnormal Phosphate Homeostasis is Associated with Atherosclerosis. J. Endocr. Soc. 2019, 3, 159–170. DOI: 10.1210/js.2018-00311.
  • Zhou, C.; Shi, Z.; Ouyang, N.; Ruan, X. Hyperphosphatemia and Cardiovascular Disease. Front. Cell Dev Biol. 2021, 9, 1–11. DOI: 10.3389/fcell.2021.644363.
  • Ahmed, S. A.; Abdella, M. A. A.; El-Sherbiny, G. M.; Ibrahim, A. M.; El-Shamy, A. R.; Atalla, S. M. M. Application of One –Factor- at-a-Time and Statistical Designs to Enhance α-Amylase Production by a Newly Isolate Bacillus Subtilis Strain-MK1. Biocatal. Agric. Biotechnol. 2019, 22, 101397. DOI: 10.1016/j.bcab.2019.101397.
  • Al-Ajalin, F. A. H.; Abdullah, S. R. S.; Idris, M.; Kurniawan, S. B.; Ramli, N. N.; Imron, M. F. Removal of Ammonium, Phosphate, and COD by Bacteria Isolated from Lepironia Articulata and Scirpus Grossus Root System. Int. J. Environ. Sci. Technol. 2022, 19, 11893–11904. DOI: 10.1007/s13762-022-03926-1.
  • Pratt, C.; Parsons, S. A.; Soares, A.; Martin, B. D. Biologically and Chemically Mediated Adsorption and Precipitation of Phosphorus from Wastewater. Curr. Opin. Biotechnol. 2012, 23, 890–896. DOI: 10.1016/j.copbio.2012.07.003.
  • Sengupta, S.; Nawaz, T.; Beaudry, J. Nitrogen and Phosphorus Recovery from Wastewater. Curr. Pollut. Rep. 2015, 1, 155–166. DOI: 10.1007/s40726-015-0013-1.
  • Dermawan, D.; Hieu, V. T.; Wang, Y. F.; You, S. J. A Novel Magnetic Fe3O4 Carbon-Shell (MFC) Functionalization with Lanthanum as an Adsorbent for Phosphate Removal from Aqueous Solution. Int. J. Environ. Sci. Technol. 2022, 1-14. DOI: 10.1007/s13762-022-04245-1.
  • Sheng, T.; Zhang, Z.; Hu, Y.; Tao, Y.; Zhang, J.; Shen, Z.; Feng, J.; Zhang, A. Adsorption of Phosphorus by Using Magnetic Mg–Al-, Zn–Al- and Mg–Fe-Layered Double Hydroxides: Comparison Studies and Adsorption Mechanism. Environ. Sci. Pollut. Res. Int. 2019, 26, 7102–7114. DOI: 10.1007/s11356-019-04191-5.
  • Husein, D. Z.; Al-Radadi, T.; Danish, E. Y. Adsorption of Phosphate Using Alginate-/Zirconium-Grafted Newspaper Pellets: Fixed-Bed Column Study and Application. Arab. J. Sci. Eng. 2017, 42, 1399–1412. DOI: 10.1007/s13369-016-2250-z.
  • Zhao, S.; Wang, B.; Gao, Q.; Gao, Y.; Liu, S. Adsorption of Phosphorus by Different Biochars. Spectrosc. Lett. 2017, 50, 73–80. DOI: 10.1080/00387010.2017.1287091.
  • Bacelo, H.; Pintor, A. M. A.; Santos, S. C. R.; Boaventura, R. A. R.; Botelho, C. M. S. Performance and Prospects of Different Adsorbents for Phosphorus Uptake and Recovery from Water. Chem. Eng. J. 2020, 381, 122566. DOI: 10.1016/j.cej.2019.122566.
  • Yang, X.; Chen, X.; Yang, X. Effect of Organic Matter on Phosphorus Adsorption and Desorption in a Black Soil from Northeast China. Soil Tillage Res. 2019, 187, 85–91. DOI: 10.1016/j.still.2018.11.016.
  • Jung, K.-W.; Kim, K.; Jeong, T.-U.; Ahn, K.-H. Influence of Pyrolysis Temperature on Characteristics and Phosphate Adsorption Capability of Biochar Derived from Waste-Marine Macroalgae (Undaria Pinnatifida Roots). Bioresour. Technol. 2016, 200, 1024–1028. DOI: 10.1016/j.biortech.2015.10.016.
  • Bendjeffal, H.; Ziati, M.; Aloui, A.; Mamine, H.; Metidji, T.; Djebli, A.; Bouhedja, Y. Adsorption and Removal of Hydroxychloroquine from Aqueous Media Using Algerian Kaolin : Full Factorial Optimisation, Kinetic, Thermodynamic, and Equilibrium Studies. Int. J. Environ. Anal. Chem. 2021, 00, 1–22. DOI: 10.1080/03067319.2021.1887162.
  • Diaf, R.; Bendjeffal, H.; Djebli, A.; Mamine, H.; Metidji, T.; Bekakria, H.; Hattab, Z.; Bouhedja, Y. α-FeOOH@Luffa Composite Used as a Cost-Effective, Robust, and Eco-Friendly Adsorbent Material to Remove Methyl Violet 10B from Water. Chem. Afr. 2022, 5, 2031–2048. DOI: 10.1007/s42250-022-00455-9.
  • Abou-Taleb, K. A.; Galal, G. F. A Comparative Study between One-Factor-at-a-Time and Minimum Runs Resolution-IV Methods for Enhancing the Production of Polysaccharide by Stenotrophomonas Daejeonensis and Pseudomonas Geniculate. Ann. Agric. Sci. 2018, 63, 173–180. DOI: 10.1016/j.aoas.2018.11.002.
  • Zhu, F.; Ma, S.; Liu, T.; Deng, X. Green Synthesis of Nano Zero-Valent Iron/Cu by Green Tea to Remove Hexavalent Chromium from Groundwater. J. Clean. Prod. 2018, 174, 184–190. DOI: 10.1016/j.jclepro.2017.10.302.
  • Zhu, F.; Liu, T.; Zhang, Z.; Liang, W. Remediation of Hexavalent Chromium in Column by Green Synthesized Nanoscale Zero-Valent Iron/Nickel: Factors, Migration Model and Numerical Simulation. Ecotoxicol. Environ. Saf. 2021, 207, 111572. DOI: 10.1016/j.ecoenv.2020.111572.
  • Abdel-Rahman, M. A.; Hassan, S. E. D.; El-Din, M. N.; Azab, M. S.; El-Belely, E. F.; Alrefaey, H. M. A.; Elsakhawy, T. One-Factor-at-a-Time and Response Surface Statistical Designs for Improved Lactic Acid Production from Beet Molasses by Enterococcus Hirae Ds10. SN Appl. Sci. 2020, 2, 1–14. DOI: 10.1007/s42452-020-2351-x.
  • Singh, S. K.; Singh, S. K.; Tripathi, V. R.; Khare, S. K.; Garg, S. K. Response Surface (Statistical) and Bench-Scale Bioreactor Level Optimization of Thermoalkaline Protease Production from a Psychrotrophic Pseudomonas Putida SKG-1 Isolate. Microb. Cell Fact. 2011, 10, 1–13. DOI: 10.1186/1475-2859-10-114.
  • Dall’ Agnol, P.; Libardi, N.; Muller, J. M.; Xavier, J. A.; Domingos, D. G.; da Costa, R. H. R. A Comparative Study of Phosphorus Removal Using Biopolymer from Aerobic Granular Sludge: A Factorial Experimental Evaluation. J. Environ. Chem. Eng. 2020, 8, 103541. DOI: 10.1016/j.jece.2019.103541.
  • Can, M. Y.; Yildiz, E. Phosphate Removal from Water by Fly Ash: Factorial Experimental Design. J. Hazard. Mater. 2006, 135, 165–170. DOI: 10.1016/j.jhazmat.2005.11.036.
  • Zhao, Y.; Wang, J.; Luan, Z.; Peng, X.; Liang, Z.; Shi, L. Removal of Phosphate from Aqueous Solution by Red Mud Using a Factorial Design. J. Hazard. Mater. 2009, 165, 1193–1199. DOI: 10.1016/j.jhazmat.2008.10.114.
  • Egbosiuba, T. C.; Abdulkareem, A. S.; Tijani, J. O.; Ani, J. I.; Krikstolaityte, V.; Srinivasan, M.; Veksha, A.; Lisak, G. Taguchi Optimization Design of Diameter-Controlled Synthesis of Multi Walled Carbon Nanotubes for the Adsorption of Pb(II) and Ni(II) from Chemical Industry Wastewater. Chemosphere 2021, 266, 128937. DOI: 10.1016/j.chemosphere.2020.128937.
  • Korake, S. R.; Jadhao, P. D. Investigation of Taguchi Optimization, Equilibrium Isotherms, and Kinetic Modeling for Cadmium Adsorption onto Deposited Silt. Heliyon 2021, 7, e05755. DOI: 10.1016/j.heliyon.2020.e05755.
  • Venkataraghavan, R.; Thiruchelvi, R.; Sharmila, D. Statistical Optimization of Textile Dye Effluent Adsorption by Gracilaria Edulis Using Plackett-Burman Design and Response Surface Methodology. Heliyon 2020, 6, e05219. DOI: 10.1016/j.heliyon.2020.e05219.
  • Belgada, A.; Charik, F. Z.; Achiou, B.; Ntambwe Kambuyi, T.; Alami Younssi, S.; Beniazza, R.; Dani, A.; Benhida, R.; Ouammou, M. Optimization of Phosphate/Kaolinite Microfiltration Membrane Using Box-Behnken Design for Treatment of Industrial Wastewater. J. Environ. Chem. Eng. 2021, 9, 104972. DOI: 10.1016/j.jece.2020.104972.
  • Mourabet, M.; El Rhilassi, A.; El Boujaady, H.; Bennani-Ziatni, M.; El Hamri, R.; Taitai, A. Removal of Fluoride from Aqueous Solution by Adsorption on Apatitic Tricalcium Phosphate Using Box-Behnken Design and Desirability Function. Appl. Surf. Sci. 2012, 258, 4402–4410. DOI: 10.1016/j.apsusc.2011.12.125.
  • He, S.; Zhu, F.; Li, L.; Ren, W. Box–Behnken Design for the Optimization of the Removal of Cr(VI) in Soil Leachate Using NZVI/Ni Bimetallic Particles. Soil Sediment. Contam. Int. J. 2018, 27, 658–673. DOI: 10.1080/15320383.2018.1502744.
  • Sarıcı Özdemir, Ç. Equilibrium, Kinetic, Diffusion and Thermodynamic Applications for Dye Adsorption with Pine Cone. Sep. Sci. Technol. 2019, 54, 3046–3054. DOI: 10.1080/01496395.2019.1565769.
  • Sarici-Özdemir, Ç.; Kiliç, F. Kinetics Behavior of Methylene Blue onto Agricultural Waste. Part. Sci. Technol. 2018, 36, 194–201. DOI: 10.1080/02726351.2016.1240127.
  • Bekakria, H.; Bendjeffal, H.; Djebli, A.; Mamine, H.; Metidji, T.; Benrdjem, Z. Heterogeneous Sono-Photo-Fenton Degradation of Methyl Violet 10B Using Fe2O3-Al2O3-Ga2O3 as a New Photocatalyst. Inorg. Nano-Metal Chem. 2020, 51, 1759–1774. DOI: 10.1080/24701556.2020.1852430.
  • Riahi, K.; Thayer, B.; Ben; Mammou, A.; Ben; Ammar, A.; Ben; Jaafoura, M. H. Biosorption Characteristics of Phosphates from Aqueous Solution onto Phoenix Dactylifera L. Date Palm Fibers. J. Hazard. Mater. 2009, 170, 511–519. DOI: 10.1016/j.jhazmat.2009.05.004.
  • Ali, M.; Ben, R.; Jellali, S. Removal of Phosphorus from Aqueous Solution by Posidonia Oceanica Fibers Using Continuous Stirring Tank Reactor. J. Hazard. Mater. 2011, 189, 577–585. DOI: 10.1016/j.jhazmat.2011.02.079.
  • Eberhardt, T. L.; Min, S.; Han, J. S. Phosphate Removal by Refined Aspen Wood Fiber Treated with Carboxymethyl Cellulose and Ferrous Chloride. Bioresour. Technol. 2006, 97, 2371–2376. DOI: 10.1016/j.biortech.2005.10.040.
  • Chen, Z.; Wu, Y.; Huang, Y.; Song, L.; Chen, H.; Zhu, S.; Tang, C.; Colloids.; Surfaces, A.   Physicochemical and Engineering Aspects Enhanced Adsorption of Phosphate on Orange Peel-Based Biochar Activated by Ca/Zn Composite : Adsorption Efficiency and Mechanisms. Colloids Surf. A 2022, 651, 129728. DOI: 10.1016/j.colsurfa.2022.129728.
  • Shin, H.; Tiwari, D.; Kim, D. Phosphate adsorption/Desorption Kinetics and P Bioavailability of Mg-Biochar from Ground Coffee Waste. J. Water Process Eng. 2020, 37, 101484. DOI: 10.1016/j.jwpe.2020.101484.
  • Quinayá, D. C. P.; D’almeida, J. R. M. Nondestructive Characterization of Epoxy Matrix Composites Reinforced with Luffa Lignocellulosic Fibers. Rev. Mater. 2017, 22, 1-8. DOI: 10.1590/s1517-707620170002.0181.
  • Chakraborty, S.; Chowdhury, S.; Saha, P. D. Adsorption of Crystal Violet from Aqueous Solution onto Sugarcane Bagasse: Central Composite Design for Optimization of Process Variables. J. Water Reuse Desalin. 2012, 2, 55–65. DOI: 10.2166/wrd.2012.008.
  • Duraipandian, J.; Rengasamy, T.; Vadivelu, S. Experimental and Modeling Studies for the Removal of Crystal Violet Dye from Aqueous Solutions Using Eco-Friendly Gracilaria Corticata Seaweed Activated Carbon/Zn/Alginate Polymeric Composite Beads. J. Polym. Environ. 2017, 25, 1062–1071. DOI: 10.1007/s10924-016-0879-z.
  • El-Wakeel, S. T.; Radwan, E. K.; Abdel Ghafar, H. H.; Moursy, A. S. Humic Acid-Carbon Hybrid Material as Lead(II) Ions Adsorbent. Desalin. Water Treat. 2017, 74, 216–223. DOI: 10.5004/dwt.2017.20584.
  • Margha, F. H.; Radwan, E. K.; Badawy, M. I.; Gad-Allah, T. A. Bi2O3–BiFeO3 Glass-Ceramic: Controllable β-/γ-Bi2O3 Transformation and Application as Magnetic Solar-Driven Photocatalyst for Water Decontamination. ACS Omega 2020, 5, 14625–14634. DOI: 10.1021/acsomega.0c01307.
  • Zhu, F.; Li, L.; Xing, J. Selective Adsorption Behavior of Cd (II) Ion Imprinted Polymers Synthesized by Microwave-Assisted Inverse Emulsion Polymerization : Adsorption Performance and Mechanism. J. Hazard. Mater. 2017, 321, 103–110. DOI: 10.1016/j.jhazmat.2016.09.012.
  • Morris, J. C.; Weber, W. J. Removal of Biologically-Resistant Pollutants from Waste Waters by Adsorption. In Advances in Water Pollution Research, 1964, pp 231–266.
  • Weber, W. J.; Morris, J. C. Advances in Water Pollution Research. In Proceedings of the First International Conference on Water Pollution Research; Pergamon Press: Oxford, 1962 ; Vol. 2, p 231.
  • Bendjeffal, H.; Mamine, H.; Djebli, A.; Rebbani, N.; Bouhedja, Y. Removal of 4-(2-Pyridylazo)-Resorcinol from Aqueous Solution Using Natural and Activated Algerian Kaolin. Sens Lett. 2017, 15, 668–675. DOI: 10.1166/sl.2017.3844.
  • Bendjeffal, H.; Guerfi, K.; Bouhedja, Y.; Rebbani, N. Immobilization of Complexes of Some Heavy Metals with a 2- (4- Pyridylazo) -Resorcinol “PAR” on Algerian Hydrothermal Clay. Phys. Proc. 2009, 2, 889–897. DOI: 10.1016/j.phpro.2009.11.040.
  • Zhu, F.; Li, L.; Ma, S.; Shang, Z. Effect Factors, Kinetics and Thermodynamics of Remediation in the Chromium Contaminated Soils by Nanoscale Zero Valent Fe/Cu Bimetallic Particles. Chem. Eng. J. 2016, 302, 663–669. DOI: 10.1016/j.cej.2016.05.072.
  • Osafo, J.; Kwesi, E.; Kofi, M.; Weck, S.; Neumann, M.; Osafo, J.; Kwesi, E.; Kofi, M. Mechanism of Orthophosphate (PO4-P) Adsorption onto Different Biochars: Environmental Technology & Innovation Mechanism of Orthophosphate (PO. Environ. Technol. Innov. 2020, 17, 100572. DOI: 10.1016/j.eti.2019.100572.
  • Silveira, M. B.; Pavan, F. A.; Gelos, N. F.; Lima, E. C.; Dias, S. L. P. Punica Granatum Shell Preparation, Characterization, and Use for Crystal Violet Removal from Aqueous Solution. Clean Soil Air Water 2014, 42, 939–946. DOI: 10.1002/clen.201100722.
  • Ávila, R. I. D.; Guerra, M. T.; Almeida, K. D.; Borges, S.; D.; M.; Vieira, S.; Marcos, L.; Júnior, D. O.; Furtado, H.; Flavia, M.; Punica Granatum, L. Protects Mice against Hexavalent Chromium- Induced Genotoxicity. Braz. J. Pharm. Sci. 2013, 49, 689–697. DOI: 10.1590/S1984-82502013000400008.
  • Eaton, A. D.; Clesceri, L. S.; Greenberg, A. E. Standard Methods for the Examination of Water and Wastewater; American Public Health Association, Washington, DC, 2014.
  • Rice, E. W.; Baird, R. B.; Eaton, A. D.; Clesceri, L. S. Standard Methods for the Examination of Water and Wastewater; American Public Health Association Washington, DC, 2012; Vol. 10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.