105
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

New nanoparticles of NaY, Ni-NaY, and Mn-NaY zeolites: highly efficient catalysts for the oxidation of sulfides to sulfoxides

&
Pages 575-582 | Received 19 Oct 2022, Accepted 07 Jan 2023, Published online: 12 Feb 2023

References

  • Auerbach, S. M.; Kathleen, A.; Carrado, K. A.; Dutta, P. K. Handbook of Zeolite Science and Technology. New York, NY: CRC Press, 2003.
  • Marakatti, V. S.; Halgeri, A. B. Metal ion-Exchanged Zeolites as Highly Active Solid Acid Catalysts for the Green Synthesis of Glycerol Carbonate from Glycerol. RSC Adv. 2015, 5, 14286–14293. DOI: 10.1039/C4RA16052E.
  • Marakatti, V. S.; Halgeri, A. B.; Shanbhag, G. V. Metal ion-Exchanged Zeolites as Solid Acid Catalysts for the Green Synthesis of Nopol from Prins Reaction. Catal. Sci. Technol. 2014, 4, 4065–4074. DOI: 10.1039/C4CY00596A.
  • Bahramian, F.; Fazlinia, A.; Mansoor, S. S.; Ghashang, M.; Azimi, F.; Biregan, M. N. Preparation of 3, 4, 5-Substituted Furan-2 (5H)-Ones Using HY Zeolite Nano-Powder as an Efficient Catalyst. Res. Chem. Intermed. 2016, 42, 6501–6510. DOI: 10.1007/s11164-016-2476-0.
  • Ghashang, M.; Khosravian, P.; Ghayoor, H. Effective removal of Penicillin from Aqueous Solution Using Zinc Oxide/Natural-Zeolite Composite Nano-Powders Prepared via Ball Milling Technique. Recent Pat. Nanotechnol. 2017, 11, 154–164. DOI: 10.2174/1872210511666170105141550.
  • Abdulkerim, Y. Influence of Acid Activation on the Ion-Exchange Properties of Manisa-Gordes Clinoptilolite. Physicochem. Probl. Miner. Process 2012, 48, 591–598. DOI: 10.5277/ppmp120222.
  • Blanchard, G.; Maunaye, M.; Martin, G. Removal of heavy metals from Waters by Means of Natural Zeolite. Water Res. 1984, 18, 1501–1507. DOI: 10.1016/0043-1354(84)90124-6.
  • Bonferoni, M.; Cerri, G.; Degennaro, M.; Juliano, C.; Caramella, C. Zn2+-Exchanged Clinoptilolite-Rich Rock as Active Carrier for Antibiotics in anti-Acne Topical Therapy: In-Vitro Characterization and Preliminary Formulation Studies. Appl. Clay Sci. 2007, 36, 95–102. DOI: 10.1016/j.clay.2006.04.014.
  • Lenstra, D. C.; Vedovato, V.; Flegeau, E. F.; Maydom, J.; Willis, M. C. One-Pot Sulfoxide Synthesis Exploiting a Sulfinyl-Dication Equivalent Generated from a DABSO/Trimethylsilyl Chloride Sequence. Org. Lett. 2016, 18, 2086–2089. DOI: 10.1021/acs.orglett.6b00712.
  • Wang, L.; Chen, M.; Zhang, P.; Li, W.; Zhang, J. Palladium/PC-Phos-Catalyzed Enantioselective Arylation of General Sulfenate Anions: Scope and Synthetic Applications. J. Am. Chem. Soc. 2018, 140, 3467–3473. DOI: 10.1021/jacs.8b00178.
  • Jia, T.; Zhang, M.; McCollom, S. P.; Bellomo, A.; Montel, S.; Mao, J.; Dreher, S. D.; Welch, C. J.; Regalado, E. L.; Williamson, R. T.; et al. Palladium-Catalyzed Enantioselective Arylation of Aryl Sulfenate Anions: A Combined Experimental and Computational Study. J. Am. Chem. Soc. 2017, 139, 8337–8345. DOI: 10.1021/jacs.7b03623.
  • Fu, D.; Dong, J.; Du, H.; Xu, J. Methanesulfinylation of Benzyl Halides with Dimethyl Sulfoxide. J. Org. Chem. 2020, 85, 2752–2758. DOI: 10.1021/acs.joc.9b03041.
  • Foucoin, F.; Caupène, C.; Lohier, F.-F.; de Oliveira Santos, J. S.; Perrio, S.; Metzner, P. 2-(Trimethylsilyl)Ethyl Sulfoxides as a Convenient Source of Sulfenate Anions. Synthesis 2007, 1315–1324. DOI: 10.1055/s-2007-966017.
  • Karimi, B.; Ghoreishi-Nezhad, M.; Clark, J. H. Selective Oxidation of Sulfides to Sulfoxides Using 30% Hydrogen Peroxide Catalyzed with a Recoverable Silica-Based Tungstate Interphase Catalyst. Org. Lett. 2005, 7, 625–628. DOI: 10.1021/ol047635d.
  • Chen, X.; Hussain, S.; Parveen, S.; Zhang, S.; Yang, Y.; Zhu, C. Sulfonyl group-Containing Compounds in the Design of Potential Drugs for the Treatment of Diabetes and Its Complications. Curr. Med. Chem. 2012, 19, 3578–3604. DOI: 10.2174/092986712801323225.
  • Islam, S. K. M.; Paul, S.; Roy, A. S.; Mondal, P. Selective Oxidation of Organic Substrates in Presence of H2O2 Using a Polymer-Anchored Iron(III)-Ferrocene Complex. J. Inorg. Organomet. Polym. 2013, 23, 560–570. DOI: 10.1007/s10904-012-9813-6.
  • Bahrami, K.; Khodaei, M. M.; Arabi, M. S. TAPC-Promoted Oxidation of Sulfides and Deoxygenation of Sulfoxides. J. Org. Chem. 2010, 75, 6208–6213. DOI: 10.1021/jo1011784.
  • Kirihara, M.; Itou, A.; Noguchi, T.; Yamamoto, J. Tantalum Carbide or Niobium Carbide Catalyzed Oxidation of Sulfides with Hydrogen Peroxide: Highly Efficient and Chemoselective Syntheses of Sulfoxides and Sulfones. Synlett 2010, 2010, 1557–1561. DOI: 10.1055/s-0029-1219947.
  • Khodaei, M. M.; Bahrami, K.; Karimi, A. H2O2/Tf2O System: An Efficient Oxidizing Reagent for Selective Oxidation of Sulfanes. Synthesis 2008, 2008, 1682–1684. DOI: 10.1055/s-2008-1067019.
  • Okada, T.; Matsumuro, H.; Kitagawa, S.; Iwai, T.; Yamazaki, K.; Kinoshita, Y.; Kimura, Y.; Kirihara, M. Selective Synthesis of Sulfoxides through Oxidation of Sulfides with Sodium Hypochlorite Pentahydrate Crystals. Synlett 2015, 26, 2547–2552. DOI: 10.1055/s-0035-1560482.
  • Kim, S.; S.; Nehru, K.; Kim, S.; S.; Kim, D. W.; Jung, H. C. A Mild and Highly Efficient Oxidation of Sulfides to Sulfoxides with Periodic Acid Catalyzed by FeCl3. Synthesis 2002, 2484–2486. DOI: 10.1055/s-2002-35623.
  • Page, P. C. B.; Buckley, B. R.; Elliott, C.; Chan, Y.; Dreyfus, N.; Marken, F. Chemoselective Oxidation of Sulfides to Sulfoxides with Urea-Hydrogen Peroxide Complex Catalysed by Diselenide. Synlett 2015, 27, 80–82. DOI: 10.1055/s-0034-1378827.
  • Zhao, L.; Zhang, H.; Wang, Y. Dirhodium(II)-Catalyzed Sulfide Oxygenations: Catalyst Removal by Coprecipitation with Sulfoxides. J. Org. Chem. 2016, 81, 129–136. DOI: 10.1021/acs.joc.5b02400.
  • Qian, W.; Pei, L. Efficient and Highly Selective Oxidation of Sulfides to Sulfoxides in the Presence of an Ionic Liquid Containing Hypervalent Iodine. Synlett 2006, 709–712. DOI: 10.1055/s-2006-933109.
  • Matteucci, M.; Bhalay, G.; Bradley, M. Mild and Highly Chemoselective Oxidation of Thioethers Mediated by Sc(OTf)3. Org. Lett. 2003, 5, 235–237. DOI: 10.1021/ol026947i.
  • Dehbashi, M.; Aliahmad, M.; Shafiee, M. R. M.; Ghashang, M. SnO2 Nanoparticles: Preparation and Evaluation of Their Catalytic Activity in the Oxidation of Aldehyde Derivatives to Their Carboxylic Acid and Sulfides to Sulfoxide Analogs. Phosphorus Sulfur Silicon Relat. Elem. 2013, 188, 864–872. DOI: 10.1080/10426507.2012.717139.
  • Mba, M.; Prins, L. J.; Licini, G. C3-Symmetric Ti(IV) Triphenolate Amino Complexes as Sulfoxidation Catalysts with Aqueous Hydrogen Peroxide. Org. Lett. 2007, 9, 21–24. DOI: 10.1021/ol062395i.
  • Rostami, A.; Saedmocheshi, N.; Shirvandi, Z. Zeolite nanoparticles (H-ZSM5) as a Highly Efficient, Green, and Reusable Heterogeneous Catalyst for Selective Oxidation of Sulfides to Sulfoxides under Mild Conditions. C. R. Chim. 2018, 21, 835–839. DIO: DOI: 10.1016/j.crci.2018.05.004.
  • Hussain, S.; Talukdar, D.; Bharadwaj, S. K.; Chaudhuri, M. K. VO2F(Dmpz)2: A New Catalyst for Selective Oxidation of Organic Sulfides to Sulfoxides with H2O2. Tetrahedron Lett. 2012, 53, 6512–6515. DOI: 10.1016/j.tetlet.2012.09.067.
  • Veerakumar, P.; Lu, Z. Z.; Velayudham, M.; Lu, K. L.; Rajagopal, S. Alumina supported Nanoruthenium as Efficient Heterogeneous Catalyst for the Selective H2O2 Oxidation of Aliphatic and Aromatic Sulfides to Sulfoxide. J. Mol. Catal. A: Chem. 2010, 332, 128–137. DOI: 10.1016/j.molcata.2010.09.008.
  • Hosseini-Eshbala, F.; Sedrpoushan, A.; Dehdashti, M. N.; Breit, B.; Mohanazadeh, F.; Veisi, H. Needle ball-like Nanostructured Mixed Cu-Ni-Co Oxides: Synthesis, Characterization and Application to the Selective Oxidation of Sulfides to Sulfoxides. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 103, 109814. DOI: 10.1016/j.msec.2019.109814.
  • Golchoubian, H.; Hosseinpoor, F. Effective Oxidation of Sulfides to Sulfoxides with Hydrogen Peroxide under Transition-Metal-Free Conditions. Molecules 2007, 12, 304–311. DOI: 10.3390/12030304.
  • Shukla, V. G.; Salgaonkar, P. D.; Akamanchi, K. G. A Mild, Chemoselective Oxidation of Sulfides to Sulfoxides Using o-Iodoxybenzoic Acid and Tetraethylammonium Bromide as Catalyst. J. Org. Chem. 2003, 68, 5422–5425. DOI: 10.1021/jo034483b.
  • Khaledian, D.; Rostami, A.; Rouhani, S. Magnetic core-Shell Nanoparticle-Supported Sc (III): a Novel and Robust Lewis Acid Nanocatalyst for the Selective Oxidation of Sulfides to Sulfoxides by H2O2 under Solvent-Free Conditions. Catal. Commun. 2019, 124, 46–50. DOI: 10.1016/j.catcom.2019.02.021.
  • Rostami, A.; Atashkar, B. Chiral oxo-Vanadium (+)-Pseudoephedrine Complex Immobilized on Magnetic Nanoparticles: A Highly Efficient and Recyclable Novel Nanocatalyst for the Chemoselective Oxidation of Sulfides to Sulfoxides Using H2O2. J. Mole. Catal. A: Chem. 2015, 398, 170–176. DOI: 10.1016/j.molcata.2014.12.010.
  • Shiri, L.; Tahmasbi, B. Tribromide ion Immobilized on Magnetic Nanoparticles as an Efficient Catalyst for the Rapid and Chemoselective Oxidation of Sulfides to Sulfoxides. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 53–57. DOI: 10.1080/10426507.2016.1224878.
  • Khosravi, K.; Naserifar, S.; Mahmoudi, B.; Khalaji, K. 1,1,2,2-Tetrahydroperoxy-1,2-Diphenylethane as New Oxidant for Chemoselective and Catalyst Free Oxidation of Sulfides to Sulfoxides and Sulfones. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 316–321. DOI: 10.1080/10426507.2016.1237951.
  • Nikoorazm, M.; Ghorbani, F.; Ghorbani-Choghamarani, A.; Erfani, Z. Nickel Schiff Base Complex Anchored on Fe3O4@MCM-41 as a Novel and Reusable Magnetic Nanocatalyst and Its Application in the Oxidation of Sulfides and Oxidative Coupling of Thiols Using H2O2. Phosphorus Sulfur Silicon Relat. Elem. 2018, 193, 552–561. DOI: 10.1080/10426507.2018.1455200.
  • Carrasco, C. J.; Montilla, F.; Álvarez, E.; Mealli, C.; Manca, G.; Galindo, A. Experimental and Theoretical Insights into the Oxodiperoxomolybdenum-Catalysed Sulphide Oxidation Using Hydrogen Peroxide in Ionic Liquids. Dalton Trans. 2014, 43, 13711–13730. DOI: 10.1039/c4dt01733a.
  • Li, Y.; Li, L.; Yu, J. Applications of Zeolites in Sustainable Chemistry. Chemistry 2017, 3, 928–949. DOI: 10.1016/j.chempr.2017.10.009.
  • Ba Mohammed, B.; Yamni, K.; Tijani, N.; Lee, H.-S.; Dehmani, Y.; El Hamdani, H.; Alrashdi, A. A.; Ramola, S.; Belwal, T.; Lgaz, H. Enhanced removal Efficiency of NaY Zeolite toward Phenol from Aqueous Solution by Modification with Nickel (Ni-NaY). J. Saudi Chem. Soc 2021, 25, 101224. DOI: 10.1016/j.jscs.2021.101224.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.