92
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Efficacy of an organic–inorganic hybrid phosphorus compound in corrosion mitigation of reinforcement steel in concrete. I. Gravimetric and electrochemical analysis

, , &
Pages 645-654 | Received 22 Nov 2022, Accepted 12 Mar 2023, Published online: 30 Mar 2023

References

  • Azad, A. K.; Ahmad, S.; Azher, S. A. Residual Strength of Corrosion-Damaged Reinforced Concrete Beams. ACI Mater. J. 2007, 104, 40–47. DOI: 10.14359/18493.
  • Azad, A. K.; Ahmad, S.; Al-Gohi, B. H. A. Flexural Strength of Corroded Reinforced Concrete Beams. Mag. Concr. Res. 2010, 62, 405–414. DOI: 10.1680/macr.2010.62.6.405.
  • Chung, L.; Najm, H.; Balaguru, P. Flexural Behavior of Concrete Slabs with Corroded Bars. Cem. Concr. Compos. 2008, 30, 184–193. DOI: 10.1016/j.cemconcomp.2007.08.005.
  • Torres-Acosta, A. A.; Navarro-Gutierreza, S.; Teran-Guillen, J. Residual Flexure Capacity of Corroded Reinforced Concrete Beams. Eng. Struct. 2007, 29, 1145–1152. DOI: 10.1016/j.engstruct.2006.07.018.
  • Palanisamy, S. P.; Maheswaran, G.; Geetha Selvarani, A.; Kamal, C.; Venkatesh, G. Ricinus communis – A Green Extract for the Improvement of anti-Corrosion and Mechanical Properties of Reinforcing Steel in Concrete in Chloride Media. J. Build. Eng. 2018, 19, 376–383. DOI: 10.1016/j.jobe.2018.05.020.
  • Ormellese, M.; Bolzoni, F.; Goldanich, S.; Pedeferri, M. P. Corrosion Inhibitors in Reinforced Concrete Structures, Part 3 – Migration of Inhibitors into Concrete. Corros. Eng. Sci. Technol. 2011, 46, 334–339. DOI: 10.1179/174327809X419230.
  • Bolzoni, F. M.; Goidanich, S.; Lazzari, L.; Ormellese, M. Corrosion Inhibitors in Reinforced Concrete Structures, Part 2 – Repair System. Corros. Eng. Sci. Technol. 2006, 41, 212–220. DOI: 10.1179/174327806X111234.
  • Ormellese, M.; Lazzari, L.; Goidanich, S.; Fumagalli, G.; Brenna, A. A Study of Organic Substances as Inhibitors for Chloride-Induced Corrosion in Concrete. Corros. Sci. 2009, 51, 2959–2968. DOI: 10.1016/j.corsci.2009.08.018.
  • Tiwari; Purnima, A. K.; Goyal, S.; Luxami, V. Influence of Corrosion Inhibitors on Two Different Concrete Systems under Combined Chloride and Carbonated Environment. Structures 2023, 48, 717–735. DOI: 10.1016/j.istruc.2022.12.093.
  • Doubi, M.; Erramli, H.; Touir, R.; Benhiba, F.; Dermaj, A.; Errahmany, N.; Hajjaji, N.; Zarrouk, A. A Synthesis 3-Phenyl-1,2,4-Triazole-5-Thione as an Inhibitor against Low Carbon Steel Corrosion in Simulated Reinforced Concrete: Experimental and Theoretical Studies. Chem. Data Collect. 2023, 44, 100989. DOI: 10.1016/j.cdc.2023.100989.
  • Tian, Y.; Bao, J.; Xie, D.; Wang, B.; Zhang, P.; Zhao, T.; Lei, D. The Effects of Organic Corrosion Inhibitor on Concrete Properties and Frost Resistance. J. Build. Eng. 2023, 65, 105762. DOI: 10.1016/j.jobe.2022.105762.
  • Tian, Y.; Guo, W.; Wang, W.; Wang, B.; Zhang, P.; Zhao, T. Influence of Organic Corrosion Inhibitors on Steel Corrosion in Concrete under the Coupled Action of Freeze-Thaw Cycles and Chloride Attack. Constr. Build. Mater. 2023, 368, 130385. DOI: 10.1016/j.conbuildmat.2023.130385.
  • Zhang, A.; Wang, Y.; Wang, H. Preparation of Inorganic-Polymer Nano-Emulsion Inhibitor for Corrosion Resistance of Steel Reinforcement for Concrete. Alex. Eng. J. 2023, 66, 537–542. DOI: 10.1016/j.aej.2022.11.020.
  • Srinivasa Rao, S.; Roopas Kiran, S.; Chaitanya Kumar, K.; Diwakar, B. S. Electrochemical Behaviour of Interface of Carbon Steel/Solution Containing Three-Component Formulations. Mater. Today: Proc. 2019, 18, 2003–2011. DOI: 10.1016/j.matpr.2019.05.350.
  • Sarada Kalyani, D.; Srinivasa Rao, S.; Chaitanya Kumar, K.; Roopas Kiran, S.; Sreedhar, B.; Appa Rao, B. V. Evaluation of Surface/Solution Interface on Carbon Steel in Contact with a Phosphonate-Based Ternary Corrosion Inhibitor System. Trans. Indian Inst. Met. 2017, 70, 2497–2508. DOI: 10.1007/s12666-017-1112-z.
  • Sarada Kalyani, D.; Srinivasa Rao, S.; Sarath Babu, M.; Appa Rao, B. V.; Sreedhar, B. Electrochemical and Surface Analytical Studies of Carbon Steel Protected from Corrosion in a Low-Chloride Environment Containing a Phosphonate-Based Inhibitor. Res. Chem. Intermed. 2015, 41, 5007–5032. DOI: 10.1007/s11164-014-1584-y.
  • Appa Rao, B. V.; Venkateswara Rao, M.; Srinivasa Rao, S.; Sreedhar, B. Tungstate as a Synergist to Phosphonate-Based Formulation for Corrosion Control of Carbon Steel in Nearly Neutral Aqueous Environment. J. Chem. Sci. 2010, 122, 639–649. DOI: 10.1007/s12039-010-0099-3.
  • Appa Rao, B. V.; Srinivasa Rao, S. Electrochemical and Surface Analytical Studies of Synergistic Effect of Phosphonate, Zn2+ and Ascorbate in Corrosion Control of Carbon Steel. Mater. Corros. 2010, 61, 285–301. DOI: 10.1002/maco.200905333.
  • Etteyeb, N.; Dhouibi, L.; Takenouti, H.; Triki, E. Protection of Reinforcement Steel Corrosion by Phenyl Phosphonic Acid Pre-Treatment, Part 1: Tests in Solutions Simulating the Electrolyte in the Pores of Fresh Concrete. Cem. Concr. Compos. 2015, 55, 241–249. DOI: 10.1016/j.cemconcomp.2014.07.025.
  • Etteyeb, N.; Dhouibi, L.; Takenouti, H.; Triki, E. Protection of Reinforcement Steel Corrosion by Phenylphosphonic Acid Pre-Treatment, Part 2: Tests in Mortar Medium. Cem. Concr. Compos. 2016, 65, 94–100. DOI: 10.1016/j.cemconcomp.2015.10.010.
  • Gunasekaran, G.; Chauhan, L. R. Eco Friendly Inhibitor for Corrosion Inhibition of Mild Steel in Phosphoric Acid Medium. Electrochim. Acta 2004, 49, 4387–4395. DOI: 10.1016/j.electacta.2004.04.030.
  • Morad, M. S. An Electrochemical Study on the Inhibiting Action of Some Organic Phosphonium Compounds on the Corrosion of Mild Steel in Aerated Acid Solutions. Corros. Sci. 2000, 42, 1307–1326. DOI: 10.1016/S0010-938X(99)00138-9.
  • Alagta, A.; Felhosi, I.; Telegdi, J.; Bertoti, I.; Kalman, E. Effect of Metal Ions on Corrosion Inhibition of Pimeloyl-1,5-di-Hydroxamic Acid for Steel in Neutral Solution. Corros. Sci. 2007, 49, 2754–2766. DOI: 10.1016/j.corsci.2006.11.008.
  • Andrade, C.; Alonso, C. Test Methods for on-Site corrosion rate measurement of Steel Reinforcement in Concrete by Means of the Polarization Resistance Method. Mater. Struct. 2004, 37, 623–643. DOI: 10.1007/BF02483292.
  • Gonzalez, Y.; Lafont, M. C.; Pebere, N.; Moran, F. A Synergistic Effect between Zinc Salt and Phosphonic Acid for Corrosion Inhibition of a Carbon Steel. J. Appl. Electrochem. 1996, 26, 1259–1265. DOI: 10.1007/BF00249928.
  • Pech-Canul, M. A.; Bartolo-Perez, P. Inhibition Effects of N-Phosphono-Methyl-Glycine/Zn2+ Mixtures on Corrosion of Steel in Neutral Chloride Solutions. Surf. Coat. Technol. 2004, 184, 133–140. DOI: 10.1016/j.surfcoat.2003.11.018.
  • Felhosi, I.; Keresztes, Z.; Karman, F. H.; Mohai, M.; Bertoti, I.; Kalman, E. Effects of Bivalent Cations on Corrosion Inhibition of Steel by 1-Hydroxyethane-1,1-Diphosphonic Acid. J. Electrochem. Soc. 1999, 146, 961–969. DOI: 10.1149/1.1391706.
  • Song, H. W.; Saraswathy, V. Corrosion Monitoring of Reinforced Concrete Structures – A Review. Int. J. Electrochem. Sci. 2007, 2, 1–28.
  • Freire, L.; Novoa, X. R.; Montemor, M. F.; Carmezim, M. J. Study of Passive Films Formed on Mild Steel in Alkaline Media by the Application of Anodic Potentials. Mater. Chem. Phys. 2009, 114, 962–972. DOI: 10.1016/j.matchemphys.2008.11.012.
  • Ahmad, A.; Kumar, R.; Kumar, A. Effect of Sodium Molybdate and Sodium Tungstate in Concrete Rebar Corrosion. Anti-Corros. Methods Mater. 2019, 66, 253–263. DOI: 10.1108/ACMM-06-2018-1960.
  • Bilek, V.; Bonczkova, S.; Hurta, J.; Pytlik, D.; Mrovec, M. Bond Strength between Reinforcing Steel and Different Types of Concrete. Procedia Eng. 2017, 190, 243–247. DOI: 10.1016/j.proeng.2017.05.333.
  • Li, S. L.; Ma, H. Y.; Lei, S. B.; Yu, R.; Chen, S. H.; Liu, D. X. Inhibition of Copper Corrosion with Schiff Base Derived from 3-Methoxysalicylaldehyde and o-Phenyldiamine in Chloride Media. Corrosion 1998, 54, 947–954. DOI: 10.5006/1.3284816.
  • Juttner, K. Electrochemical Impedance Spectroscopy (EIS) of Corrosion Processes on Inhomogeneous Surfaces. Electrochim. Acta 1990, 35, 1501–1508. DOI: 10.1016/0013-4686(90)80004-8.
  • El Hosary, A. A.; Saleh, R. M. Shams El Din, A.M. Corrosion Inhibition by Naturally Occurring Substances. I. The Effect of Hibiscus subdariffa (Karkade) Extract on the Dissolution of Al and Zn. Corros. Sci. 1972, 12, 897–904. DOI: 10.1016/S0010-938X(72)80098-2.
  • Mansfeld, F.; Kendig, M. W.; Lorenz, W. J. Corrosion Inhibition in Neutral, Aerated Media. J. Electrochem. Soc. 1985, 132, 290–296. DOI: 10.1149/1.2113820.
  • Macdonald, R.; Franceschetti, D. R. Impedance Spectroscopy; Wiley: New York, 1987.
  • Lopez, D. A.; Simison, S. N.; de Sanchez, S. R. The Influence of Steel Microstructure on CO2 Corrosion. EIS Studies on the Inhibition Efficiency of Benzimidazole. Electrochim. Acta 2003, 48, 845–854. DOI: 10.1016/S0013-4686(02)00776-4.
  • Bhalgamiya, S.; Tivadi, G.; Jethva, M. Techniques for Accelerated Corrosion Test of Steel Concrete for Determine Durability. Int. Res. J. Eng. Technol. 2018, 5, 4399–4402.
  • Dodds, W.; Christodoulou, C.; Goodier, C.; Austin, S.; Dunne, D. Durability Performance of Sustainable Structural Concrete: Effect of Coarse Crushed Concrete Aggregate on Rapid Chloride Migration and Accelerated Corrosion. Constr. Build. Mater. 2017, 155, 511–521. DOI: 10.1016/j.conbuildmat.2017.08.073.
  • Nordtest, NT-Build 356 Concrete, Repairing Methods and Protective Coating: Embedded Steel Method, Chloride Permeability. Nordtest Project No. 707-87/7, Finland, 1989.
  • Albarwary, I. H. M.; Haido, J. H. Bond Strength of Concrete with the Reinforcement Bars Polluted with Oil. Eur. Sci. J. 2013, 9, 255–272. DOI: 10.19044/esj.2013.v9n6p%25p.
  • Maca, P.; Panteki, E.; Curbach, M. Bond Stress-Slip Behaviour of Concrete and Steel under High-Loading Rates. Int. J. Comput. Methods Exp. Meas. 2016, 4, 221–230. DOI: 10.2495/CMEM-V4-N3-221-230.
  • IS 456 – 2000: Plain and Reinforced Concrete – Code of Practice.
  • IS 383 – 1970 (Reaffirmed 2002) – Specification for Coarse and Fine Aggregates from Natural Sources for Concrete.
  • IS: 2770 (Part I) – 1967 (Reaffirmed 2007) – Methods of Testing Bond in Reinforced Concrete, Part 1 Pull-Out Test.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.