126
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

N-Heterocyclic carbene: thiazolylidene–Cu(I) complexes: microwave-assisted synthesis and use as catalyst in A3 reaction

ORCID Icon, &
Pages 682-692 | Received 01 Dec 2022, Accepted 12 Mar 2023, Published online: 13 Apr 2023

References

  • Arduengo, III A. J.; Harlov, R. L.; Kline, M. A Stable Crystalline Carbene. J. Am. Chem. Soc. 1991, 113, 361–363. DOI: 10.1021/ja00007a092.
  • Hsu, D.-S.; Liang, S.-P. NHC-Mediated Synthesis of Tricyclic Spirocarbocycles via an Intramolecular Stetter Reaction of Cyclic Enal-Enones. J. Org. Chem. 2020, 85, 1270–1278. DOI: 10.1021/acs.joc.9b02881.
  • Ren, Q.; Li, M.; Yuan, L.; Wang, J. Recent Advances on N-Heterocyclic Carbene Catalyzed Achiral Synthesis. Org. Biomol. Chem. 2017, 15, 4731–4749. DOI: 10.1039/C7OB00568G.
  • Bellemin-Laponnaz, S.; Dagorne, S. Group 1 and 2 and Early Transition Metal Complexes Bearing N-Heterocyclic Carbene Ligands: Coordination Chemistry, Reactivity, and Applications. Chem. Rev. 2014, 114, 8747–8774. DOI: 10.1021/cr500227y.
  • Hahn, F. E.; Jahnke, M. C. Heterocyclic Carbenes: Synthesis and Coordination Chemistry. Angew. Chem. Int. Ed. Engl. 2008, 47, 3122–3172. DOI: 10.1002/anie.200703883.
  • Cazin C. S. J. (Ed.) N-Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis, in the Series Catalysis by Metal Complexes; Springer: Berlin, Germany, 2011; Vol. 32. DOI: 10.1007/978-90-481-2866-2_14.
  • Ojha, M.; Bansal, R. K. Application of Nitrogen Heterocyclic Carbenes in Organocatalysis. Curr. Cat. 2021, 10, 3–41. DOI: 10.2174/2211544709999201201120617.
  • Ojha, M.; Choudhary, S.; Bansal, R. K. 3-Benzylbenzothiazolylidene Carbene Catalyzed Isomerization of Dimethyl Maleate to Dimethyl Fumarate: Experimental and Theoretical Results. Curr. Organocat. 2020, 7, 108–117. DOI: 10.2174/2213337206666191018111354.
  • Herrmann, W. A.; Elison, M.; Fischer, J.; Kocher, C.; Artus, G. R. J. Metal Complexes of N-Heterocyclic Carbenes—a New Structural Principle for Catalysts in Homogeneous Catalysis. Angew. Chem. Int. Ed. 1995, 34, 2371–2374. DOI: 10.1002/anie.199523711.
  • Smith, C. A.; Narouz, M. R.; Lummis, P. A.; Singh, I.; Nazemi, A.; Li, C.; Crudden, C. M. N-Heterocyclic Carbenes in Materials Chemistry. Chem. Rev. 2019, 119, 4986–5056. DOI: 10.1021/acs.chemrev.8b00514.
  • Touj, N.; Al Nasr, I. S.; Koko, W. S.; Khan, T. A.; Özdemir, I.; Yasar, S.; Mansour, L.; Alresheedi, F.; Hamdi, N.. Anticancer, Antimicrobial and Antiparasitical Activities of Copper(I) Complexes Based on N-Heterocyclic Carbene (NHC) Ligands Bearing Aryl Substituents. J. Coord. Chem. 2020, 73, 2889–2905. DOI: 10.1080/00958972.2020.1836359.
  • Touj, N.; Chakchouk-Mtibaa, A.; Mansour, L.; Harrath, A. H.; Al-Tamimi, J.; Mellouli, L.; Ozdemir, I.; Yasar, S.; Hamdi, N. Synthesis, Spectroscopic Properties and Biological Activity of New Cu(I) N-Heterocyclic Carbene Complexes. J. Mol. Struct. 2019, 1181, 209–219. DOI: 10.1016/j.molstruc.2018.12.093.
  • Bourissou, D.; Guerret, O.; Gabbaï, F. P.; Bertrand, G. Stable Carbenes. Chem. Rev. 2000, 100, 39–92. DOI: 10.1021/cr940472u.
  • Jhanke, M. C.; Hahn, F. E. N-Heterocyclic Carbenes from Laboratory Curiosities to Efficient Synthetic Tools; Diezgonza’lez, S. Ed.; Royal Society of Chemistry: Cambridge, 2017; pp. 1–45
  • Arduengo, III A. J.; Davidson, F.; Dias, H. V. R.; Goerlich, J. R.; Khasnis, D.; Marshall, W. J.; Prakasha, T. K. An Air Stable Carbene and Mixed Carbene “Dimers. J. Am. Chem. Soc. 1997, 119, 12742–12749. DOI: 10.1002/1nie.200703883.
  • Arduengo, III A. J.; Goerlich, J. R.; Marshall, W. J. A Stable Diaminocarbene. J. Am. Chem. Soc. 1995, 117, 11027–11028. DOI: 10.1021/ja00149a034.
  • Arduengo, III, A. J.; Goerlich, J. R.; Marshall, W. J. A Stable Thiazol-2-Ylidene and Its Dimer. Liebigs Ann/Recl. 1997, 1197, 365–374. DOI: 10.1002/jlac.199719970213.
  • (a) Enders, D.; Breuer, K.; Raabe, G.; Runsink, J.; Teles, J. H.; Melder, J. P.; Ebel, K.; Brode, S.. Preparation, Structure, and Reactivity of 1,3,4-Triphenyl-4,5-Dihydro-1H-1,2,4-Triazol-5-Ylidene, a New Stable Carbene. Angew. Chem. Int. Ed. Engl. 1995, 34, 1021–1023. DOI: 10.1002/anie.199510211. (b) Guisado-Barrios, G.; Bouffard, J.; Donnadieu, B.; Bertrand, G. Crystalline 1H-1,2,3-Triazol-5-Ylidenes: New Stable Mesoionic Carbenes (MICs). Ange. Chem. Int. Ed. Engl. 2010, 49, 4759–4762. DOI: 10.1002/anie.201001864. (c) Guisado-Barrios, G.; Bouffard, J.; Donnadieu, B.; Bertrand, G. Bis(1,2,3-Triazol-5-Ylidenes) (i-Bitz) as Stable 1,4-Bidentate Ligands Based on Mesoionic Carbenes (MICs). Organometallics 2011, 30, 6017–6021. DOI: 10.1021/om2008446.
  • Mathew, P.; Neels, A.; Albrecht, M. 1,2,3-Triazolylidenes as Versatile Abnormal Carbene Ligands for Late Transition Metals. J. Am. Chem. Soc. 2008, 130, 13534–13535. DOI: 10.1021/ja805781s.
  • (a) Hahn, E.; Wittenbecher, L.; Boese, R.; Blser, D. N,N′-Bis(2,2 Dimethylpropyl)Benzimidazolin-2-Ylidene: A Stable Nucleophilic Carbene Derived from Benzimidazole. Chem. Eur. J. 1999, 5, 1931–1935. DOI: 10.1002/(SICI)1521-3765(19990604)5:6 < 1931::AID-CHEM1931 > 3.0.CO;2-M. (b) Hahn, F. E.; Wittenbecher, L.; Le Van, D.; Frhlich, R. Novel 1,2,4-Triphosphole and 1,2,3-Triphosphetene Derivatives from N,N′-Bis(2,2-Dimethylpropyl) Benzimidazolin-2-Ylidene and Phosphaalkynes. Angew. Chem. Int. Ed. 2000, 39, 2307–2310. DOI: 10.1002/1521-3773(20000703)39:13 < 2307::AID-ANIE2307 > 3.0.CO;2-D.
  • Peris, E., Routes to N-Heterocyclic Carbene Complexes In N-Heterocyclic Carbenes in Ttransition Metal Catalysis. In The Series Topics in Organometallic Chemistry, Glorius, F. Ed.; Springer: Berlin, Germany, 2007; Vol. 21, pp 83–116. DOI: 10.1007/978-3-540-36930-1_4.
  • Cazin, C. S. J. (Ed.) Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis Vol. 32 in the Series Catalysis by Metal Complexes; Springer: London, 2011. DOI: 10.1007/978-90-481-2866-2.
  • Touj, N.; Chakchouk-Mtibaa, A.; Mansour, L.; Harrath, A. H.; Hamoud, J.; Özdemir, I.; Mellouli, L.; Yaşar, S.; Hamdi, N. Copper-Catalyzed Azide–Alkyne Cycloaddition (CuAAC) under Mild Condition in Water: Synthesis. Catalytic Application and Biological Activities. J. Organomet. Chem. 2017, 853, 49–63. DOI: 10.1016/j.jorganchem.2017.09.024.
  • Touj, N.; Özdemir, I.; Yaşar, S.; Hamdi, N. An Efficient (NHC) Copper (I)-Catalyst for Azide–Alkyne Cycloaddition Reactions for the Synthesis of 1,2,3-Trisubstituted Triazoles: Click Chemistry. Inorg. Chim. Acta 2017, 467, 21–32. DOI: 10.1016/j.ica.2017.06.065.
  • Glorius F., (Ed.). N-Heterocyclic Carbenes in Ttransition Metal Catalysis Vol. 21 in the Series Topics in Organometallic Chemistry; Springer: Berlin, Germany, 2007; pp. 1–20
  • Ozdemir, I.; Yasar, S.; Centinkaya, B., Ruthenium(II) N-Heterocyclic Carbene Complexes in the Transfer Hydrogenation of Ketone. Transit. Met. Chem. 2005, 30, 831–835. DOI: 10.1007/s11243-005-6736-x.
  • Yamaguchi, Y.; Kashiwabara, T.; Ogata, K.; Miura, Y.; Nakamura, Y.; Kobayashi, K.; Ito, T. Synthesis and Reactivity of Triethylborane Adduct of N-Heterocyclic Carbene: Versatile Synthons for Synthesis of N-Heterocyclic Carbene Complexes. Chem. Commun. 2004, 2160–2161. DOI: 10.1039/B405459H.[Q5]
  • Danopoulos, A. A.; Tulloch, A. A. D.; Winston, S.; Eastham, G.; Hursthouse, M. B. Chelating and ‘Pincer’ Dicarbene Complexes of Palladium: Synthesis and Structural Studies. Dalton Trans. 2003, 1009–1015. DOI: 10.1039/B209739G.
  • Poyatos, M.; Sanau, M.; Peris, E. New Rh(I) and Rh(III) Bisimidazol-2-Ylidene Complexes: Synthesis, Reactivity, and Molecular Structures. Inorg. Chem. 2003, 42, 2572–2576. DOI: 10.1021/ic026212.
  • Lin, J. C. Y.; Huang, R. T. W.; Lee, C. S.; Bhattacharyya, A.; Hwang, W. S.; Lin, I. J. B. Coinage Metal-N-Heterocyclic Carbene Complexes. Chem. Rev. 2009, 109, 3561–3598. DOI: 10.1021/cr8005153.
  • Egbert, J. D.; Cazin, C. S. J.; Nolan, S. P. Copper N-Heterocyclic Carbene Complexes in Catalysis. Catal. Sci. Technol. 2013, 3, 912–926. DOI: 10.1039/C2CY20816D.
  • Liu, B.; Ma, X.; Wu, F.; Chen, W. Simple Synthesis of Neutral and Cationic Cu-NHC Complexes. Dalton Trans. 2015, 44, 1836–1844. DOI: 10.1039/C4DT02986K.
  • Tulloch, A. A. D.; Danopoulous, A. A.; Kleinhenz, S.; Light, M. E.; Hursthouse, M. B.; Eastham, G. Structural Diversity in Pyridine-N-Functionalized Carbene Copper(I) Complexes. Organometallics 2001, 20, 2027–2031. DOI: 10.1021/om010014t.
  • Simonovic, S.; Whitwood, A. C.; Clegg, W.; Harrington, R. W.; Hursthouse, M. B.; Male, L.; Douthwaite, V. Synthesis of Copper(I) Complexes of N-Heterocyclic Carbene–Phenoxyimine/Amine Ligands: Structures of Mononuclear Copper(II). Mixed-Valence Copper(I)/(II), and Copper(II) Cluster Complexes. Eur. J. Inorg. Chem. 2009, 2009, 1786–1795. DOI: 10.1002/ejic.200801152.
  • Citadelle, C. A.; Le Nouy, E.; Bisaro, F.; Slawin, A. M. Z.; Cazin, C. S. J. Simple and Versatile Synthesis of Copper and Silver N-Heterocyclic Carbene Complexes in Water or Organic Solvents. Dalton Trans. 2010, 39, 4489–4491. DOI: 10.1039/C0DT00128G.
  • Landers, B.; Navarro, O. Microwave-Assisted Synthesis of (N-Heterocyclic Carbene)MCl Complexes of Group 11 Metals. Eur. J. Inorg. Chem. 2012, 2012, 2980–2982. DOI: 10.1002/ejic.201200248.
  • (a) Yoo, W.; Zhao, L.; Li, C. J. The A3-Coupling (Aldehyde–Alkyne–Amine) Reaction: A Versatile Method for the Preparation of p Propargylamines. Aldrichim. Acta 2011, 44, 43–51. (b) Rokade, B. V.; Barker, J.; Guiry, P. J. Development of and Recent Advances in Asymmetric A3 Coupling. Chem. Soc. Rev. 2019, 48, 4766–4790. DOI: 10.1039/C9CS00253G. (c) Peshkov, V. A.; Pereshivko, O. P.; Van der Eycken, E. V. A Walk around the A3- Coupling. Chem. Soc. Rev. 2012, 41, 3790–3807. DOI: 10.1039/c2cs15356d.
  • (a) Wang, M.; Li, P.; Wang, L. Silica-Immobilized NHC–CuI Complex: An Efficient and Reusable Catalyst for A3-Coupling (Aldehyde–Alkyne–Amine) under Solventless Reaction Conditions. Eur. J. Org. Chem. 2008, 2008, 2255–2261. DOI: 10.1002/ejoc.200800006. (b) Chen, M.; Navarro, O. N-Heterocyclic Carbene (NHC)-Copper(I) Complexes as Catalysts for A3 Reactions. Synlett 2013, 24, 1190–1192. DOI: 10.1055/s-0033-1338944.
  • Baig, N.; Goyal, V.; Gupta, R.; Bansal, R. K. N-Heterocyclic Carbenes–Cu(I) Complexes as Catalysts: A Theoretical Insight. Aus. J. Chem. 2021, 74, 503–513. DOI: 10.1071/CH20332.
  • Schöffler, A. L.; Makarem, A.; Rominger, F.; Straub, B. F. Dinuclear Thiazolylidene Copper Complex as Highly Active Catalyst for Azid–Alkyne Cycloadditions. Beilstein J. Org. Chem. 2016, 12, 1566–1572. DOI: 10.3762/bjoc.12.151.
  • (a) Gawande, M. B.; Shelke, S. N.; Zboril, R.; Verma, R. S. Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics, Acc. Chem. Res 2014, 47, 1338–1348. (b) Ravichandran, S.; Karthikeyan, E. Microwave Synthesis: A Potential Tool for Green Chemistry. Int. J. Chem. Res. 2011, 3, 466–470. DOI: 10.1021/ar400309b.
  • Cavallo, L.; Correa, A.; Costabile, V.; Jacobsen, V. Steric and Electronic Effects in the Bonding of N-Heterocyclic Ligands to Transition Metals. J. Organomet. Chem. 2005, 690, 5407–5413. DOI: 10.1016/j.jorganchem.2005.07.012.
  • (a) Green, J. C.; Herbert, B. J. Electronic Structure and Ionization Energies of Palladium and Platinum N-Heterocyclic Carbene Complexes. Dalton Trans. 2005, 1214–1220. DOI: 10.1039/B418133F. (b) Hu, X.; Tang, Y.; Ganzel, P.; Meyer, K. Silver Complexes of a Novel Tripodalcarbene Ligand: Evidence of Significant Metal-Carbene π-Interaction. Oranometallics 2003, 22, 612–614. DOI: 10.1021/om020935j. (c) Hu, X.; Castro-Rodriguez, I.; Olsen, K.; Meyer, K. Group 11 Metal Complexes of N-Heterocyclic Carbene Liands: Nature of the Metal-Carbene Bond. Oranometallics 2004, 23, 755–764. DOI: 10.1021/om0341855. (d) Scott, N. M.; Dorta, R.; Stevens, E. D.; Correa, A.; Cavallo, L.; Nolan, S. P. Interaction of a Bulky N-Heterocyclic Carbene Ligand with Rh(I) and Ir(I). Double C-H Activation and Isolation of Bare 14-Electron Rh(III) and Ir(III) Complexes. J. Am. Chem. Soc. 2005, 127, 3516–3526. DOI: 10.1021/ja043249f.
  • Nemcsok, D.; Witchmann, K.; Frenking, G. The Significance of π Interactions in Group 11 Complexes with N-Heterocyclic Carbenes. Organometallics 2004, 23, 3640–3646. DOI: 10.1021/om049802j.
  • Politzer, P.; Daiker, K. C. Models for Chemical Reactivity in the Force Concept in Chemisty, Deb, R. C. Ed.; Van Nostrand Reinhold Co.: New York, NY, 1981, pp 294–387
  • Tasi, G.; Pálinkó, I.; Nyerges, L.; Fejes, P.; Förster, H. Calculation of Electrostatic Potential Maps and Atomic Charges for Large Molecules. J. Chem. Inf. Comput. Sci. 1993, 33, 296–299. DOI: 10.1021/ci00013a003.
  • Gaussian, 16.; Revision, C.; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; et al. Gaussian, Inc.: Wallingford CT, 2016.
  • Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. DOI: 10.1063/1.464913.
  • Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B Condens. Matter. 1988, 37, 785–789. DOI: 10.1103/physrevb.37.785.
  • Zheng, J.; Xu, X.; Truhlar, D. G. Minimally Augmented Karlsruhe Basis Sets. Theor. Chem. Acc. 2011, 128, 295–305. DOI: 10.1007/s00214-010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.