108
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, characterization, and quantum chemistry local chemical reactivity description of new phosphorylated derivatives of piperazine

, , ORCID Icon, , ORCID Icon &
Pages 693-703 | Received 09 Dec 2022, Accepted 12 Mar 2023, Published online: 31 Mar 2023

References

  • Upadhayaya, S.; Sinha, N.; Jain, S.; Kishore, N.; Chandra, R.; Arora, S. Optically Active Antifungal Azoles: Synthesis and Antifungal Activity of (2R,3S)-2-(2,4-Difluorophenyl)-3-(5-{2-[4-Aryl-Piperazin-1-yl]-Ethyl}-Tetrazol-2-yl/1-yl)-1-[1,2,4]-Triazol-1-yl-Butan-2-ol. Bioorg. Med. Chem. 2004, 12, 2225–2238. DOI: 10.1016/j.bmc.2004.02.014.
  • (a) Chaudhary, P.; Kumar, R.; Verma, A. K.; Singh, D.; Yadav, V.; Chhillar, A. K.; Sharma, G. L.; Chandra, R. Synthesis and Pharmacological Evaluation of [(4-Arylpiperazin-1-yl)-Alkyl]-Carbamic Acid Ethyl Ester Derivatives as Potential Anxiolytic Agents. Bioorg. Med. Chem. 2006, 14, 1819–1826. DOI: 10.1007/s12272-012-0704-8.
  • (a) Vacca, P; Dorsey, D; Schleif, A; Levine, R; McDaniel, L; Darke, P; Zugay, J; Quintero, C; Blahy, M; Sardana, B; Schlabach, J; Graham, I; Condra, J; Gotalib, L; Holloway, K; Lin, J; Chen, W; Vastag, K; Ostovic, D; Anderson, S; Emini, A; Hu, R. The Design of a Potent and Orally Bioavailable HIV Protease Inhibitor. J. Med. Chem. 1994, 37, 3443. DOI: 10.1021/jm00047a001.(b) Rossen, K; Weissman, A; Sagar, J; Reamer, A; Askin, D; Volante, R; Reider, J. Asymmetric Hydrogenation of Tetrahydropyrazines: Synthesis of (S)-Piperazine-2-Tert-Butylcarboxamide, an Intermediate in the Preparation of the HIV Protease Inhibitor Indinavir. Tetrahedron. Lett. 1995, 36, 6419–3451. DOI: 10.1016/0040-4039(95)01345-I.
  • (a) Hulme, C; Cherrier, M. Novel Applications of Ethyl Glyoxalate with the Ugi MCR. Tetrahedron. Lett. 1999, 40, 5295–5299. DOI: 10.1016/S0040-4039(99)00960-0.(b) Lamouri, A; Heymans, F; Tavet, G; Dive, P; Batt, N; Blavet, P. Design and Modeling of New Platelet-Activating Factor Antagonists. 1. Synthesis and Biological Activity of 1,4-Bis(3',4',5'-Trimethoxybenzoyl)-2-[[(Substituted Carbonyl and Carbamoyl)Oxy]Methyl]Piperazines. J. Med. Chem. 1993, 36, 990–1000. DOI: 10.1021/jm00060a006. (c) Yevich, J; New, D; Smith, W; Lobeck, J; Catt, D; Minielli, L; Eison, M; Taylor, D; Riblet, L. Temple, D. Synthesis and Biological Evaluation of 1-(1,2-Benzisothiazol-3-yl)- and (1,2-Benzisoxazol-3-yl) Piperazine Derivatives as Potential Antipsychotic Agents. J. Med. Chem. 1986, 29, 359–369. DOI: 10.1021/jm00153a010. (d) Choi, S; Elmaleh, D; Hanson, R; Fischman, A. Design, Synthesis, and Biological Evaluation of Novel Non-Piperazine Analogues of 1-[2-(Diphenylmethoxy) Ethyl]- and 1-[2-[Bis(4-Fluorophenyl) Methoxy] Ethyl]-4-(3-Phenylpropyl) Piperazines as Dopamine Transporter Inhibitors. J. Med. Chem. 1999, 42, 3647–3656. DOI: 10.1021/jm990161h.
  • (a) Mallo, A; Reyes, I; Azuaje, J; Franco, R; García, A; Majellaro, M; Miranda, D; García, X; Jespers, W; Gutiérrez, H; Navarro, G; Sotelo, E. Potent and Subtype-Selective Dopamine D2 Receptor Biased Partial Agonists Discovered via an Ugi-Based Approach. J. Med. Chem. 2021, 64, 8710−8726. (b) Essegian, D; Cunningham, T; Zerio, C; Chapman, E; Schatz, J; Schurer, S. Molecular Dynamics Simulations Identify Tractable Lead-like Phenyl-Piperazine Scaffolds as eIF4A1 ATP-Competitive Inhibitors. ACS Omega, 2021, 6, 24432−24443. (c) Suzuki, J; Ootaka, A; Onoue, S; Onoue, M. Synthesis and Acaricidal Activity of Phenylpiperazine Derivatives. J. Pestic. Sci. 2021, 46, 189–197. DOI: 10.1584/jpestics.D21-007. (d) Norman, M; Minick, D; Rigdon, G. Effect of Linking Bridge Modifications on the Antipsychotic Profile of Some Phthalimide and Isoindolinone Derivatives. J. Med. Chem. 1996, 39, 149–157. DOI: 10.1021/jm9502201.
  • Specialized Information Services, National Library of Medicine. Search for Piperazine. TOXNET. http://toxnet.nlm.nih.gov.
  • Waszkielewicz, A.; Pytka, K.; Rapacz, A.; Wełna, E.; Jarzyna, M.; Satała, G.; Bojarski, A.; Sapa, J.; Żmudzki, P.; Filipek, B.; Marona, H. Synthesis and Evaluation of Antidepressant-like Activity of Some 4-Substituted 1-(2-Methoxyphenyl) Piperazine Derivatives. Chem. Biol. Drug. Des. 2015, 5, 326–335. DOI: 10.1111/cbdd.12394.
  • Munier, M.; Tritsch, D.; Lièvremont, D.; Rohmer, M.; Grosdemange, C. Synthesis and Biological Evaluation of Aryl Phosphoramidate Prodrugs of Fosfoxacin and Its Derivatives. Bioorg. Chem. 2019, 89, 103012. DOI: 10.1016/j.bioorg.2019.103012.
  • (a) Castrejón, J; Guevara, O; Díaz, R; Gutiérrez, A; Franco, M; Suárez, G; Zamudio, A. Multicomponent One-Pot Synthesis of (Dihydro-1H-Benzo[d]Imidazole) Phosphonate. Phosphorus Sulfur Silicon Relat. Element. 2019, 194, 1062–1066. DOI: 10.1080/10426507.2019.1602834.(b) Castrejón, J; Reyna, J; Flores, M; García, I; Zamudio, A; Franco, M. Characterizing the Thermal Degradation Mechanism of Two Bisphosphoramidates by TGA, DSC, Mass Spectrometry and First-Principle Theoretical Protocols. J. Mol. Struct. 2020, 1221, 128781. DOI: 10.1016/j.molstruc.2020.128781. (c) Zamudio, A; Castrejón, L; Ramírez, S; Pérez, N; Bañuelos, A; Aguilar, G; Franco, P. Patent MX/a/2019/014893. (d) Zamudio, A; Castrejón, L; Ramírez, S; Pérez, H; Bañuelos, H; Rivera, V; Franco, M. Patent MX/a/2019/014902. (e) Franco, M; Castrejón, L; Gonzalez, S, G; Bonilla, I; Zamudio, A. A New Tricomponent Reaction for the Synthesis of Symmetric and Asymmetric Alkyl Bisphosphoramidates. Phosphorus Sulf. Silicon Relat. Element. 2021, 196, 929–935. DOI: 10.1080/10426507.2021.1946061. (f) Egron, D; Imbach, L; Gosselin, G; Aubertin, M; Perigaud, C. S-Acyl-2-Thioethyl Phosphoramidate Diester Derivatives as Mononucleotide Prodrugs. J. Med. Chem. 2003, 46, 4564–4571. DOI: 10.1021/jm0308444. (g) Freel, M; Borch, R; Activation Mechanisms of Nucleoside Phosphoramidate Prodrugs. J. Med. Chem. 2000, 43, 4319–4327. DOI: 10.1021/jm000302b. (h) Hecker, J; Erion, D. Prodrugs of Phosphates and Phosphonates. J. Med. Chem. 2000, 51, 2328–2345. DOI: 10.1021/jm701260b.
  • Mehellou, Y.; Balzarini, J.; McGuigan, C. Aryloxy Phosphoramidate Triesters: A Technology for Delivering Monophosphorylated Nucleosides and Sugars into Cells. Chem. Med. Chem. 2009, 4, 1779–1791. DOI: 10.1002/cmdc.
  • (a) Gorin, I; Ferguson, G; Thatcher, J. A Novel Esterification Procedure Applied to Synthesis of Biologically Active Esters of Foscarnet. Tetrahedron. Lett. 1997, 38, 2791–2794. DOI: 10.1016/S0040-4039(97)00491-7.(b) Xiao, J; Dominique, S; Chris, M. Anti-HIV-Active Nucleoside Triphosphate Prodrugs. J. Med. Chem. 2020, 63, 6003–6027. DOI: 10.1021/acs.jmedchem.0c00271. (c) Randolph, T; Li, T; Chris, A; Heyman, R; Chen, J; Bow, J; Van, C; Peterkin, V; Carr, A; Stolarik, D. Discovery of 2-Aminoisobutyric Acid Ethyl Ester (AIBEE) Phosphoramidate Prodrugs for Delivering Nucleósido HCV NS5B Polymerase Inhibitors. Bioorg. Med. Chem. Lett. 2020, 30, 126986–126989. DOI: 10.1016/j.bmcl.2020.126986. (d) Feng, D; Andrew, N; Emily, D; Tamari, N; Frank, M. Enzyme-Catalyzed Kinetic Resolution of Chiral Precursors to Antiviral Prodrugs. Biochemistry 2019, 58, 3204–3211. DOI: 10.1021/acs.biochem.9b00530. (e) Chandra, K; Syam, G; Thaslim, S; Venkataramaiah, C; Naga, R; Sunil, G; Rajendra, W. Synthesis, Spectral Characterization, Docking Studies and Antiviral Activity of Phosphorylated Derivatives of Lopinavir Intermediate. ChemistrySelect 2019, 4, 6101–6105. DOI: 10.1002/slct.201900945.
  • (a) Faraci, W. S.; Yang, B. V.; O’Rourke, D.; Spencer, R. V. Inhibition of Helicobacter pylori Urease by Phenyl Phosphorodiamidates: Mechanism of Action V. Bioorg. Med. Chem., 1995, 3, 605–610. DOI: 10.1016/0968-0896(95)00043-G. (b) Mathilde, M.; Denis, T.; Didier, L.; Michel, R.; Catherine, G. B. Synthesis and Biological Evaluation of Aryl Phosphoramidate Prodrugs of Fos-Foxacin and Its Derivatives. Bioorg. Chem., 2019, 89, 103012–103022. DOI: 10.1016/j.bioorg.2019.103012.
  • (a) He, F. Phosphonate Prodrugs: An Overview and Recent Advances. Toxicol. Lett. 1999, 108, 277–283. DOI: 10.4155/fmc-2018-0591
  • Eastman, T.; Roth, S.; Brimacombe, R.; Simeonov, A.; Shen, M.; Patnaik, S.; Hall, D. Remdesivir: A Review of Its Discovery and Development Leading to Emergency UseAuthorization for Treatment of COVID-19. ACS Cent. Sci. 2020, 6, 672–683. DOI: 10.1021/acscentsci.0c00489.
  • a) Chen, X.; Li, Xi; Li, Xi; Qu, Zhi; Jiang, Y.; Qu, L. Synthesis of New Types of N-Arylpiperazine Phosphoramide Analogues of Chrysin. J. Chin. Chem. Soc. 2010, 57, 144–148. DOI: 10.1002/jccs.201000022.b) Qu, Z; Chen, X; Qu, L; Yuan, J; Li, H; Zhao, Y. Synthesis of Novel Piperazine Phosphoramidate Analogues of 2-Arylquinolones. Phosphorus Sulf. Silicon Relat. Element. 2010, 185, 1516–1520. DOI: 10.1080/10426500903120750.
  • Li, Q.; Sun, X.; Yang, X.; Wu, M.; Sun, S.; Chen, X. Transition-Metal-Free Amination Phosphoryl Azide for the Synthesis of Phosphoramidates. RSC Adv. 2019, 9, 16040–16043. DOI: 10.1039/c9ra03389k.
  • Li, X.; Chen, X.; Yuan, J.; Qu, L.; Zhu, H.; Bi, W.; Zhao, Y. Synthesis and Characterization of Phosphoramide Piperazine Analogs of Paeonol. Phosphorus Sulf Silicon Relat. Element. 2015, 190, 404–410. DOI: 10.1080/10426507.2014.965822.
  • Geerlings, P.; Proft, F.; Langenaeker, W. Conceptual Density Functional Theory. Chem. Rev. 2003, 103, 1793–1873. DOI: 10.1021/cr990029p.
  • Franco, M. The Electronic Temperature and the Effective Chemical Potential Parameters of an Atom in a Molecule. A Fermi–Dirac Semi-Local Variational Approach. Phys. Chem. Chem. Phys. 2022, 24, 807–816. DOI: 10.1039/D1CP04071E.
  • Parr, R. G.; Pearson, R.; G. Absolute Hardness: Companion Parameter to Absolute Electronegativity. J. Am. Chem. Soc. 1983, 105, 7512–7516. DOI: 10.1021/ja00364a005.
  • Parr, R. G.; Yang, W. Density-Functional Theory of the Electronic Structure of Molecules. Annu. Rev. Phys. Chem. 1995, 46, 701–728. DOI: 10.1146/annurev.pc.46.100195.003413.
  • Domingo, L. R.; Ríos-Gutiérrez, M.; Pérez, P. Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules 2016, 21, 748. DOI: 10.3390/molecules21060748.
  • Proft, F. D.; Ayers, P. W.; Geerlings, P.; F. G.; Shaik, S. The Conceptual Density Functional Theory Perspective of Bonding. En. In Chemical Bond: Fundamental Aspects of Chemical Bonding; Wiley-VCH Verlag GmbH & Co. KgaA: Weinheim, 2014; pp 233–270. DOI: 10.1002/9783527664696.ch7.
  • Quintana, A.; Heidar, F.; Ayers, W. Elementary Derivation of the “|Δµ| Big is Good. J. Phys. Chem. Lett. 2018, 9, 4344–4348. DOI: 10.1021/acs.jpclett.8b01312.
  • Quintana, A.; Ayers, W. Dipolar Cycloadditions and the “|Δµ| Big is Good” Rule: A Computational Study. Theor. Chem. Acc. 2018, 137, 177. DOI: 10.1007/s00214-018-2391-0.
  • Quintana, A.; Ayers, W. The “|Δµ| Big is Good” Rule, the Maximum Hardness, and Minimum Electrophilicity Principles. Theor. Chem. Acc. 2019, 138, 44. DOI: 10.1007/s00214-019-2435-0.
  • Quintana, A.; Ayers, W.; Zadeh, F. Reactivity and Charge Transfer Beyond the Parabolic Model: The “|Δµ| Big is Good” Principle. ChemistrySelect 2021, 6, 96. DOI: 10.1002/slct.202004055.
  • Franco-Pérez, M.; Gázquez, J. L. Electronegativities of Pauling and Mulliken in Density Functional Theory. J. Phys. Chem. A 2019, 123, 10065–10071. DOI: 10.1021/acs.jpca.9b07468.
  • Balduz, J.; Levy, M.; Parr, R.; Perdew, J. Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy. Phys. Rev. Lett. 1982, 49, 1691–1694. DOI: 10.1103/PhysRevLett.49.1691.
  • Pearson, R. G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85, 3533–3539. DOI: 10.1021/ja00905a001.
  • Pearson, R. G. Acids and Bases. Science 1966, 151, 172–177. DOI: 10.1126/science.151.3707.172.
  • Pérez, P.; Domingo, L. R.; Aizman, A.; Contreras, R. The Electrophilicity Index in Organic Chemistry. In Theoretical Aspects of Chemical Reactivity; Elsevier: New York, NY, 2007; Vol. 19.
  • Pérez, P.; Domingo, L. R.; Aurell, M. J.; Contreras, R. Quantitative Characterization of the Global Electrophilicity Pattern of Some Reagents Involved in 1,3-Dipolar Cycloaddition Reactions. Tetrahedron 2003, 59, 3117–3125. DOI: 10.1016/S0040-4020(03)00374-0.
  • Domingo, L. R.; Aurell, M. J.; Pérez, P.; Contreras, R. Quantitative Characterization of the Global Electrophilicity Power of Common Diene/Dienophile Pairs in Diels-Alder Reactions. Tetrahedron 2002, 58, 4417–4423. DOI: 10.1016/s0040-4020(02)00410-6.
  • Chattaraj, P.; Sarkar, U.; Roy, D. Electrophilicity Index. Chem. Rev. 2006, 106, 2065–2091. DOI: 10.1021/cr040109f.
  • Chattaraj, P.; K; Maiti, B.; Sarkar, U. Philicity: A Unified Treatment of Chemical Reactivity and Selectivity. J. Phys. Chem. A 2003, 107, 4973–4975. DOI: 10.1021/jp034707u.
  • Robles, A.; Franco, M.; Gázquez, J.; Cárdenas, C.; Fuentealba, P. Local Electrophilicity. J. Mol. Model. 2018, 24, 245– 257. DOI: 10.1007/s00894-018-3785-6.
  • Srivastava, R. Theoretical Studies on the Molecular Properties, Toxicity, and Biological Efficacy of 21 New Chemical Entities. ACS Omega. 2021, 6, 24891–24901. DOI: 10.1021/acsomega.1c03736.
  • Morell, C.; Gázquez, J. L.; Vela, A.; Guégan, F.; Chermette, H. Revisiting Electroaccepting and Electrodonating Powers: Proposals for Local Electrophilicity and Local Nucleophilicity Descriptors. Phys. Chem. Chem. Phys. 2014, 16, 26832–26842. DOI: 10.1039/C4CP03167A.
  • Parr, R. G.; von Szentpaly, L.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922–1924. DOI: 10.1021/ja983494x.
  • Frisch, J.; Trucks, W.; Schlegel, H.; Scuseria, E.; Robb, M.; Cheeseman, J. R.; Fox, D. J. Gaussian 09, Revision 2009; Gaussian, Inc.: Wallingford, CT, 2009.
  • Becke, A. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. DOI: 10.1063/1.464913.
  • Chai, J.; Head, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. DOI: 10.1039/B810189B.
  • Keith, T. A. AIMAll (Version 19.10.12); TK Gristmill Software, Overland Park, KS, 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.