117
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Facile chemoselective dithioacetalization of carbonyl compounds promoted by Fe3O4@MCM-41-GPTMS-Gu-CuIINPs as an efficient magnetic nanostructured catalyst

& ORCID Icon
Pages 752-764 | Received 14 Dec 2022, Accepted 17 Mar 2023, Published online: 30 Mar 2023

References

  • Kunz, H.; Waldmann, H. Protecting Groups in Comprehensive Organic Synthesis; B. M. Trost, ed.; Pergamon Press: Oxford, 1991; Vol. 6, pp 631–701
  • Kocienski, P.-J. Protecting Groups, 3rd ed.; Georg Thieme Verlag: New York, 2005; Vol. 15, p 668.
  • Greene, T.-W.; Wuts, P.-G. Protective Groups in Organic Synthesis, 3rd ed.; John Wiley & Sons: New York, 1991.
  • Hoffmann, R.-W. Protecting-Group-Free Synthesis. Synthesis. 2006, 3531–3541. ‏ DOI: 10.1055/s-2006-950311.
  • Young, I.-S.; Baran, P.-S. Protecting-Group-Free Synthesis as an Opportunity for Invention. Nat. Chem. 2009, 1, 193–205. ‏ DOI: 10.1038/nchem.216.
  • Roulland, E. Protecting‐Group‐Free Total Syntheses: A Challenging Approach. Angew. Chem. Int. Ed. Engl. 2011, 50, 1226–1227. ‏ DOI: 10.1002/anie.201006370.
  • Greene, T.-W.; Wuts, P.-G.-M. Protective Groups in Organic Synthesis, 4th ed.; John Wiley & Sons: New York, 2007.
  • Corey, E.-J.; Seebach, D. Phenylthiomethyllithium and Bis (Phenylthio) Methyllithium. J. Org. Chem. 1966, 31, 4097–4099. ‏ DOI: 10.1021/jo01350a052.
  • Eliel, E.-L.; Morris-Natschke, S. Asymmetric Syntheses Based on 1, 3-Oxathianes. 1. Scope of the Reaction. J. Am. Chem. Soc. 1984, 106, 2937–2942. ‏ DOI: 10.1021/ja00322a033.
  • Corey, E.-J.; Seebach, D. Carbanions of 1, 3‐Dithianes. Reagents for C-C Bond Formation by Nucleophilic Displacement and Carbonyl Addition. Angew. Chem. Int. Ed. Engl. 1965, 4, 1075–1077. ‏ DOI: 10.1002/anie.196510752.
  • Seebach, D.; Corey, E.-J. Generation and Synthetic Applications of 2-Lithio-1, 3-Dithianes. J. Org. Chem. 1975, 40, 231–237. ‏ DOI: 10.1021/jo00890a018.
  • Seebach, D. Methods and Possibilities of Nucleophilic Acylation. Angew. Chem. Int. Ed. Engl. 1969, 8, 639–649. ‏ DOI: 10.1002/anie.196906391.
  • Grobel, B.-T.; Seebach, D. Umpolung of the Reactivity of Carbonyl Compounds through Sulfur-Containing Reagents. Synthesis. 1977, 357–402. ‏ DOI: 10.1055/s-1977-24412.
  • Page, P.-C.; van Niel, M.-B.; Prodger, J.-C. Synthetic Uses of the 1, 3-Dithiane Grouping from 1977 to 1988. Tetrahedron 1989, 45, 7643–7677. ‏ DOI: 10.1016/S0040-4020(01)85784-7.
  • Wuts, P.-G.-M. Greene’s Protective Groups in Organic Synthesis, 5th ed.; John Wiley & Sons: New Jersy, 2014.
  • Vale, J. R.; Rimpiläinen, T.; Sievänen, E.; Rissanen, K.; Afonso, C. A. M.; Candeias, N. R. Pot-Economy Autooxidative Condensation of 2-Aryl-2-Lithio-1, 3-Dithianes. J. Org. Chem. 2018, 83, 1948–1958. ‏ DOI: 10.1021/acs.joc.7b02896.
  • Olsen, R.-K.; Currier, J.-O, Jr. The Chemistry of the Thiol Group; S. Patai, ed.; John Wiley & Sons: New York, 1974; Part 2, p 519.
  • Dong, D.; Ouyang, Y.; Yu, H.; Liu, Q.; Liu, J.; Wang, M.; Zhu, J. Chemoselective Thioacetalization in Water: 3-(1,3-Dithian-2-Ylidene) Pentane-2,4-Dione as an Odorless, Efficient, and Practical Thioacetalization Reagent. J. Org. Chem. 2005, 70, 4535–4537. ‏DOI: 10.1021/jo050271y.
  • Das, B.; Ramu, R.; Reddy, M.-R.; Mahender, G. Simple, Mild and Efficient Thioacetalization and Transthioacetalization of Carbonyl Compounds and Deprotection of Thioacetals: Unique Role of Thiols in the Selectivity of Thioacetalization. Synthesis. 2005, 250–254. ‏ DOI: 10.1055/s-2004-834934.
  • Ouyang, Y.; Dong, D.; Zheng, C.; Yu, H.; Liu, Q.; Fu, Z. Chemoselective Thioacetalization Using 3-(1, 3-Dithian-2-Ylidene) Pentane-2, 4-Dione as an Odorless and Efficient Propane-1, 3-Dithiol Equivalent under Solvent-Free Conditions. Synthesis 2006, 22, 3801–3804. ‏ DOI: 10.1055/s-2006-950298.
  • Rudrawar, S.; Besra, R.-C.; Chakraborti, A.-K. Perchloric Acid Adsorbed on Silica Gel (HClO4-SiO2) as an Extremely Efficient and Reusable Catalyst for 1, 3-Dithiolane/Dithiane Formation. Synthesis 2006, 2006, 2767–2771. ‏ DOI: 10.1055/s-2006-942474.
  • Ralls, J.-W.; Dodson, R.-M.; Riegel, B. Addition of Mercaptans to Unsaturated Steroid Ketones. J. Am. Chem. Soc. 1949, 71, 3320–3325. ‏ DOI: 10.1021/ja01178a014.
  • Djerassi, C.; Gorman, M. Studies in Organic Sulfur Compounds. VI. 1 Cyclic Ethylene and Trimethylene Hemithioketals. J. Am. Chem. Soc. 1953, 75, 3704–3708. ‏ DOI: 10.1021/ja01111a029.
  • Miyake, H.; Nakao, Y.; Sasaki, M. Oxalic Acid-Promoted Preparation of Dithioacetals from Carbonyl Compounds or Acetals. Chem. Lett. 2007, 36, 104–105. ‏ DOI: 10.1246/cl.2007.104.
  • Karimi, B.; Khalkhali, M. Silica Functionalized Sulfonic Acid as a Recyclable Interphase Catalyst for Chemoselective Thioacetalization of Carbonyl Compounds in Water. J. Mol. Catal. A: Chem. 2007, 271, 75–79. ‏ DOI: 10.1016/j.molcata.2007.02.018.
  • Hazarkhani, H. Trichloromelamine (TCM)-Catalyzed Efficient and Selective Thioacetalization of Aldehydes and Transthioacetalization of Acetals and Oxathioacetals under Mild Reaction Conditions. Synth. Commun. 2008, 38, 2597–2606. ‏ DOI: 10.1080/00397910802219338.
  • Hajipour, A.-R.; Pourmousavi, S.-A.; Ruoho, A.-E. An Efficient Method for Thioacetalization of Carbonyl Compounds in the Presence of a Catalytic Amount of Benzyltriphenylphosphonium Tribromide under Solvent-Free Conditions. Phosphorus Sulfur Silicon Relat. Elem. 2007, 182, 921–937. ‏ DOI: 10.1080/10426500601088739.
  • Firouzabadi, H.; Iranpoor, N.; Karimi, B. Lithium Bromide-Catalyzed Highly Chemoselective and Efficient Dithioacetalization of α, β-Unsaturated and Aromatic Aldehydes under Solvent-Free Conditions. Synthesis. 1999, 58–60. ‏ DOI: 10.1055/s-1999-3679.
  • Shaterian, H.-R.; Hosseinian, A.; Ghashang, M.; Khorami, F. Chemoselective Dithioacetalization of Carbonyl Compounds Using Magnesium Hydrogensulfate as Efficient Heterogeneous Catalyst. Phosphorus Sulfur Silicon Relat. Elem. 2008, 183, 2490–2501. ‏ DOI: 10.1080/10426500801967740.
  • Lai, J.; Du, W.; Tian, L.; Zhao, C.; She, X.; Tang, S. Fe-Catalyzed Direct Dithioacetalization of Aldehydes with 2-Chloro-1, 3-Dithiane. Org. Lett. 2014, 16, 4396–4399. ‏DOI: 10.1021/ol502276r.
  • Kamal, A.; Chouhan, G. Scandium Triflate as a Recyclable Catalyst for Chemoselective Thioacetalization. Tetrahedron Lett. 2002, 43, 1347–1350. ‏ DOI: 10.1016/S0040-4039(01)02378-4.
  • Besra, R.-C.; Rudrawar, S.; Chakraborti, A.-K. Copper (II) Tetrafluoroborate as an Extremely Efficient Catalyst for 1,3-Dithiolane/Dithiane Formation from Carbonyl Compounds under Solvent-Free Conditions at Room Temperature. Tetrahedron Lett. 2005, 46, 6213–6217. ‏ DOI: 10.1016/j.tetlet.2005.07.059.
  • Muthusamy, S.; Babu, S.-A.; Gunanathan, C. Indium (III) Chloride as an Efficient, Convenient Catalyst for Thioacetalization and Its Chemoselectivity. Tetrahedron Lett. 2001, 42, 359–362. ‏ DOI: 10.1016/S0040-4039(00)01966-3.
  • De, S.-K. Cobalt (II) Chloride Catalyzed Chemoselective Thioacetalization of Aldehydes. Tetrahedron Lett. 2004, 45, 1035–1036. ‏ DOI: 10.1016/j.tetlet.2003.11.082.
  • Khan, A.-T.; Mondal, E.; Sahu, P.-R.; Islam, S. Nickel (II) Chloride as an Efficient and Useful Catalyst for Chemoselective Thioacetalization of Aldehydes. Tetrahedron Lett. 2003, 44, 919–922. ‏ DOI: 10.1016/S0040-4039(02)02771-5.
  • Ceschi, M.-A.; de Araujo Felix, L.; Peppe, C. Indium Tribromide-Catalyzed Chemoselective Dithioacetalization of Aldehydes in Non-Aqueous and Aqueous Media. Tetrahedron Lett. 2000, 41, 9695–9699. ‏ DOI: 10.1016/S0040-4039(00)01741-X.
  • Varala, R.; Nuvula, S.; Adapa, S.-R. Efficient Copper Bromide Catalyzed Chemoselective Thioacetalization of Carbonyl Compounds: Selectivity and Scope. Bull. Korean Chem. Soc. 2006, 27, 1079–1082. ‏ DOI: 10.5012/bkcs.2006.27.7.1079.
  • Bracher, F.; Litz, T. 2‐Aryl‐2‐[1‐(2‐Hydroxypropyl)]‐1,3‐Dithianes as Versatile Building Blocks for the Preparation of Enantiomerically Pure Drugs. Arch. Pharm. Pharm. Med. Chem. 1995, 328, 235–238. ‏ DOI: 10.1002/ardp.19953280306.
  • Weng, S.-S.; Chang, S.-C.; Chang, T.-H.; Chyn, J.-P.; Lee, S.-W.; Lin, C.-A.; Chen, F.-K. Chemoselective (Trans) Thioacetalization of Carbonyl Compounds with a Reusable Lewis Acid-Surfactant-Combined Copper Bis (Dodecyl Sulfate) Catalyst in Water. Synthesis. 2010, 1493–1499. ‏ DOI: 10.1055/s-0029-1218693.
  • Firouzabadi, H.; Iranpoor, N.; Hazarkhani, H. Iodine Catalyzes Efficient and Chemoselective Thioacetalization of Carbonyl Functions, Transthioacetalization of O, O-and S, O-Acetals and Acylals. J. Org. Chem. 2001, 66, 7527–7529. ‏ DOI: 10.1021/jo015798z.
  • De, S.-K. Yttrium Triflate as an Efficient and Useful Catalyst for Chemoselective Protection of Carbonyl Compounds. Tetrahedron Lett. 2004, 45, 2339–2341. ‏ DOI: 10.1016/j.tetlet.2004.01.106.
  • Bao, S.; Chen, L.; Ji, Y.; Yang, J. Efficient Procedure for Oxathioacetalization Using the Novel Ionic Liquid. Chin. J. Chem. 2010, 28, 2119–2122. ‏ DOI: 10.1002/cjoc.201090351.
  • Gupta, N.; Sonu; Kad, G. L.; Singh, J. Acidic Ionic Liquid [Bmim] HSO4: An Efficient Catalyst for Acetalization and Thioacetalization of Carbonyl Compounds and Their Subsequent Deprotection. Catal. Commun. 2007, 8, 1323–1328. ‏ DOI: 10.1016/j.catcom.2006.11.030.
  • Hajipour, A.-R.; Azizi, G.; Ruoho, A.-E. An Efficient Method for Chemoselective Thioacetalization of Aldehydes in the Presence of a Catalytic Amount of Acidic Ionic Liquid under Solvent-Free Conditions. Synlett 2009, 12, 1974–1978. ‏ DOI: 10.1055/s-0029-1217550.
  • Hajipour, A.-R.; Hosseini, P.; Ruoho, A.-E. Application of Bu4N+ HSO4- as an Ionic Liquid and Acid Catalyst for Thioacetalization of Aldehydes and Ketones. Phosphorus Sulfur Silicon Relat. Elem. 2008, 183, 2502–2508. ‏ DOI: 10.1080/10426500801967757.
  • Kamal, A.; Chouhan, G. Investigations towards the Chemoselective Thioacetaliztion of Carbonyl Compounds by Using Ionic Liquid [Bmim] Br as a Recyclable Catalytic Medium. Adv. Synth. Catal. 2004, 346, 579–582. ‏ DOI: 10.1002/adsc.200303171.
  • Rajabi, F.; Karimi, N.; Luque, R.; Voskressensky, L. Highly Ordered Mesoporous Functionalized Pyridinium Protic Ionic Liquid Framework as a Highly Efficient Catalytic System in Chemoselective Thioacetalization of Carbonyl Compounds under Solvent-Free Conditions. Mol. Catal. 2021, 515, 111919. ‏ DOI: 10.1016/j.mcat.2021.111919.
  • Karimi, B.; Vafaeezadeh, M. SBA-15 Functionalized Sulfonic Acid Containing a Confined Hydrophobic and Acidic Ionic Liquid: A Highly Efficient Catalyst for Solvent-Free Thioacetalization of Carbonyl Compounds at Room Temperature. RSC Adv. 2013, 3, 23207–23211. ‏ DOI: 10.1039/c3ra42286k.
  • Bez, G.; Gogoi, D. A Rapid and Efficient Method for 1,3-Dithiolane Synthesis. Tetrahedron Lett. 2006, 47, 5155–5157. ‏ DOI: 10.1016/j.tetlet.2006.05.057.
  • Zarei, A.; Hajipour, A. R.; Khazdooz, L.; Mirjalili, B. F.; Zahmatkesh, S. Efficient and Chemoselective Method for Thioacetalization and Transthioacetalization Using Catalytic Amount of P2O5/Al2O3 under Microwave Irradiation. J. Mol. Catal. A: Chem. 2009, 301, 39–46. ‏ DOI: 10.1016/j.molcata.2008.11.005.
  • Xing, Z.; Yang, M.; Sun, H.; Wang, Z.; Chen, P.; Liu, L.; Wang, X.; Xie, X.; She, X. Visible-Light Promoted Dithioacetalization of Aldehydes with Thiols under Aerobic and Photocatalyst-Free Conditions. Green Chem. 2018, 20, 5117–5122. ‏ DOI: 10.1039/C8GC02237B.
  • Chaiseeda, K.; Chavasiri, W. Thioacetalization of Aldehydes and Ketones Catalyzed by Hexabromoacetone. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 1034–1039. ‏ DOI: 10.1080/10426507.2017.1321646.
  • Du, K.; Wang, S.-C.; Basha, R.-S.; Lee, C.-F. Visible‐Light Photoredox‐Catalyzed Thioacetalization of Aldehydes under Metal‐Free and Solvent‐Free Conditions. Adv. Synth. Catal. 2019, 361, 1597–1605. ‏ DOI: 10.1002/adsc.201800999.
  • Veisi, H.; Sedrpoushan, A.; Zolfigol, M.-A.; Mohanazadeh, F.; Hemmati, S. Silica Phenyl Sulfonic Acid as a Solid Acid Heterogeneous Catalyst for Chemoselective Thioacetalization of Carbonyl Compounds and Dethioacetalization under Mild Conditions. J. Heterocycl. Chem. 2013, 50, E204–E206. ‏ DOI: 10.1002/jhet.1011.
  • Aoyama, T.; Suzuki, T.; Nagaoka, T.; Takido, T.; Kodomari, M. Silica-Gel Supported Sulfamic Acid (SA/SiO2) as an Efficient and Reusable Catalyst for Conversion of Ketones into Oxathioacetals and Dithioacetals. Synth. Commun. 2013, 43, 553–566. ‏ DOI: 10.1080/00397911.2011.604458.
  • Ali, M.-H.; Gomes, M.-G. A Simple and Efficient Heterogeneous Procedure for Thioacetalization of Aldehydes and Ketones. Synthesis 2005, 8, 1326–1332. ‏ DOI: 10.1055/s-2005-865303.
  • Hajipour, A.-R.; Zarei, A.; Khazdooz, L.; Zahmatkesh, S.; Ruoho, A.-E. A Mild and Chemoselective Catalyst for Thioacetalization under Solvent Free Conditions. Phosphorus Sulfur Silicon Relat. Elem. 2006, 181, 387–395. ‏ DOI: 10.1080/104265091000877.
  • Roy, B.; Sengupta, D.; Basu, B. Graphene Oxide (GO)-Catalyzed Chemoselective Thioacetalization of Aldehydes under Solvent-Free Conditions. Tetrahedron Lett. 2014, 55, 6596–6600. ‏ DOI: 10.1016/j.tetlet.2014.10.043.
  • Shaterian, H.-R.; Azizi, K.; Fahimi, N. Silica-Supported Phosphorus Pentoxide: A Reusable Catalyst for S,S-Acetalization of Carbonyl Groups under Ambient Conditions. J. Sulfur Chem. 2011, 32, 85–91. ‏ DOI: 10.1080/17415993.2010.542155.
  • Sedrpoushan, A.; Ghazizadeh, H. Mesoporous SBA-15 Silica Catalyst Functionalized with Phenylsulfonic Acid Groups (SBA-15-Ph-SO3H) as Efficient Nanocatalyst for Chemoselective Thioacetalization of Carbonyl Compounds. J. Sulfur Chem. 2017, 38, 112–118. ‏ DOI: 10.1080/17415993.2016.1257929.
  • Jin, T.-S.; Sun, X.; Ma, Y.-R.; Li, T.-S. A Rapid and Efficient Method of Thioacetalization of Carbonyl Compounds Catalysed by POCl3-Montmorillnite. Synth. Commun. 2001, 31, 1669–1673. ‏ DOI: 10.1081/SCC-100103985.
  • Jung, N.; Grassle, S.; Lutjohann, D.-S.; Brase, S. Solid-Supported Odorless Reagents for the Dithioacetalization of Aldehydes and Ketones. Org. Lett. 2014, 16, 1036–1039. ‏ DOI: 10.1021/ol403313h.
  • Bahrami, S.; Hassanzadeh‐Afruzi, F.; Maleki, A. Synthesis and Characterization of a Novel and Green Rod‐like Magnetic ZnS/CuFe2O4/Agar Organometallic Hybrid Catalyst for the Synthesis of Biologically‐Active 2‐Amino‐Tetrahydro‐4H‐Chromene‐3‐Carbonitrile Derivatives. Appl. Organomet. Chem. 2020, 34, e5949. ‏ DOI: 10.1002/aoc.5949.
  • Maleki, A.; Azadegan, S. Amine-Functionalized Silica-Supported Magnetic Nanoparticles: Preparation, Characterization and Catalytic Performance in the Chromene Synthesis. J. Inorg. Organomet. Polym. 2017, 27, 714–719. ‏ DOI: 10.1007/s10904-017-0514-z.
  • Maleki, A.; Taheri-Ledari, R.; Ghalavand, R.; Firouzi-Haji, R. Palladium-Decorated O-Phenylenediamine-Functionalized Fe3O4/SiO2 Magnetic Nanoparticles: A Promising Solid-State Catalytic System Used for Suzuki-Miyaura Coupling Reactions. J. Phys. Chem. Solids 2020, 136, 109200. ‏ DOI: 10.1016/j.jpcs.2019.109200.
  • Maleki, A.; Panahzadeh, M.; Eivazzadeh-Keihan, R. Agar: A Natural and Environmentally-Friendly Support Composed of Copper Oxide Nanoparticles for the Green Synthesis of 1,2,3–Triazoles. Green Chem. Lett. Rev. 2019, 12, 395–406. ‏ DOI: 10.1080/17518253.2019.1679263.
  • Ghodsinia, S.-S.; Akhlaghinia, B. CuI Anchored onto Mesoporous SBA-16 Functionalized by Aminated 3-Glycidyloxypropyltrimethoxysilane with Thiosemicarbazide (SBA-16/GPTMS-TSC-CuI): A Heterogeneous Mesostructured Catalyst for S-Arylation Reaction under Solvent-Free Conditions. Green Chem. 2019, 21, 3029–3049. ‏ DOI: 10.1039/C8GC03931C.
  • Ghasemzadeh, M.-S.; Akhlaghinia, B. 2-Aminoethanesulfonic Acid Immobilized on Epichlorohydrin Functionalized Fe3O4@WO3 (Fe3O4@WO3-EAE-SO3H): A Novel Magnetically Recyclable Heterogeneous Nanocatalyst for the Green One-Pot Synthesis of 1-Substituted-1 H-1, 2, 3, 4-Tetrazoles in Water. BCSJ. 2017, 90, 1119–1128. ‏ DOI: 10.1246/bcsj.20170148.
  • Mohammadinezhad, A.; Akhlaghinia, B. Fe3O4@ Boehmite-NH2-CoII NPs: An Inexpensive and Highly Efficient Heterogeneous Magnetic Nanocatalyst for the Suzuki-Miyaura and Heck-Mizoroki Cross-Coupling Reactions. Green Chem. 2017, 19, 5625–5641. ‏ DOI: 10.1039/C7GC02647A.
  • Mazloum Farsi Baf, M.; Akhlaghinia, B.; Zarei, Z.; Ghodsinia, S.-S. Ecofriendly and Facile One‐Pot Multicomponent Synthesis of 5‐Phenyl‐5,10‐Dihydropyrido [2, 3‐d: 6, 5‐d′] Dipyrimidine‐2, 4, 6, 8 (1H, 3H, 7H, 9H)‐Tetraone Derivatives Catalyzed by CuII Immobilized on Functionalized Magnetic Mesoporous MCM‐41 (Fe3O4@MCM‐41‐GPTMS‐Gu‐CuII). ChemistrySelect. 2020, 5, 15195–15208. ‏ DOI: 10.1002/slct.202004112.
  • Akhlaghinia, B.; Tavakoli, S.; Asadi, M.; Safaei, E. N. N', N″, N‴-Tetramethyltetra-2,3-Pyridinoporphyrazinato Copper(II) Methyl Sulfate as a New and Efficient Catalyst for the Dithioacetalization and the Oxathioacetalization of Carbonyl Compounds. J. Porphyr. Phthalocyanines. 2006, 10, 167–175. ‏ DOI: 10.1142/S108842460600020X.
  • Akhlaghinia, B.; Makarem, A. Dithioacetalization of Carbonyl Compounds under Catalyst-Free Condition. J. Sulfur Chem. 2011, 32, 575–581. ‏ DOI: 10.1080/17415993.2011.622394.
  • Pourhasan-Kisomi, R.; Shirini, F.; Golshekan, M. Fe3O4@ MCM-41@ NH-SO3H: An Efficient Magnetically Reusable Nano-Catalyst for the Formylation of Amines and Alcohols. Silicon. 2022, 14, 2583–2594. DOI: 10.1007/s12633-021-01000-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.