741
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Stable cysteine sulfenic acid: synthesis by direct oxidation of a thiol, crystallographic analysis, and elucidation of reactivities

ORCID Icon, , ORCID Icon, , , & ORCID Icon show all
Pages 466-470 | Received 16 Feb 2023, Accepted 20 Mar 2023, Published online: 05 Apr 2023

References

  • Allison, W. S. Formation and Reactions of Sulfenic Acids in Proteins. Acc. Chem. Res. 1976, 9, 293–299. DOI: 10.1021/ar50104a003.
  • Poole, L. B.; Karplus, P. A.; Claiborne, A. Protein Sulfenic Acids in Redox Signaling. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 325–347. DOI: 10.1146/annurev.pharmtox.44.101802.121735.
  • Paulsen, C. E.; Carroll, K. S. Orchestrating Redox Signaling Networks through Regulatory Cysteine Switches. ACS Chem. Biol. 2010, 5, 47–62. DOI: 10.1021/cb900258z.
  • Paulsen, C. E.; Carroll, K. S. Cysteine-Mediated Redox Signaling: Chemistry, Biology, and Tools for Discovery. Chem. Rev. 2013, 113, 4633–4679. DOI: 10.1021/cr300163e.
  • Gupta, V.; Carroll, K. S. Sulfenic Acid Chemistry, Detection and Cellular Lifetime. Biochim. Biophys. Acta. 2014, 1840, 847–875. DOI: 10.1016/j.bbagen.2013.05.040.
  • Devarie-Baez, N. O.; Silva Lopez, E. I.; Furdui, C. M. Biological Chemistry and Functionality of Protein Sulfenic Acids and Related Thiol Modifications. Free Radic. Res. 2016, 50, 172–194. DOI: 10.3109/10715762.2015.1090571.
  • Hogg, D. R. Chemistry of Sulfenic Acids and Esters. In The Chemistry of Sulfenic Acids and Their Derivatives, Patai, S. Ed.; New York: Wiley, 1990; pp 361–402. DOI: 10.1002/9780470772287.ch9.
  • Nakamura, N. A Stable Sulfenic Acid, 9-Triptycenesulfenic Acid: its Isolation and Characterization. J. Am. Chem. Soc. 1983, 105, 7172–7173. DOI: 10.1021/ja00362a026.
  • Yoshimura, T.; Tsukurimichi, E.; Yamazaki, S.; Soga, S.; Shimasaki, C.; Hasegawa, K. Synthesis of a Stable Sulfenic Acid, Trans-Decalin-9-Sulfenic Acid. J. Chem. Soc. Chem. Commun. 1992, 1337. DOI: 10.1039/c39920001337.
  • Goto, K.; Tokitoh, N.; Okazaki, R. Synthesis of a Stable Arenesulfenic Acid Bearing a Bowl-Shaped Macrobicyclic Cyclophane Skeleton. Angew. Chem. Int. Ed. Engl. 1995, 34, 1124–1126. DOI: 10.1002/anie.199511241.
  • Saiki, T.; Goto, K.; Tokitoh, N.; Okazaki, R. Synthesis and Structure of a Bridged Calix[6]Arene with a Sulfenic Acid Functionality in the Cavity. J. Org. Chem. 1996, 61, 2924–2925. DOI: 10.1021/jo960068q.
  • Ishii, A.; Komiya, K.; Nakayama, J. Synthesis of a Stable Sulfenic Acid by Oxidation of a Sterically Hindered Thiol (Thiophenetriptycene-8-Thiol) and Its Characterization. J. Am. Chem. Soc. 1996, 118, 12836–12837. DOI: 10.1021/ja962995k.
  • Goto, K.; Holler, M.; Okazaki, R. Synthesis, Structure, and Reactions of a Sulfenic Acid Bearing a Novel Bowl-Type Substituent: The First Synthesis of a Stable Sulfenic Acid by Direct Oxidation of a Thiol. J. Am. Chem. Soc. 1997, 119, 1460–1461. DOI: 10.1021/ja962994s.
  • Goto, K.; Shimada, K.; Furukawa, S.; Miyasaka, S.; Takahashi, Y.; Kawashima, T. Formation of a Stable Sulfenic Acid by Hydrolysis of a Thionitrate and a Sulfenyl Bromide. Chem. Lett. 2006, 35, 862–863. DOI: 10.1246/cl.2006.862.
  • Ishihara, M.; Abe, N.; Sase, S.; Goto, K. Synthesis, Structure, and Reactivities of a Stable Primary-Alkyl-Substituted Sulfenic Acid. Chem. Lett. 2015, 44, 615–617. DOI: 10.1246/cl.150046.
  • Yukimoto, M.; Nishino, R.; Suzuki, F.; Ishihara, M.; Sugamata, K.; Minoura, M. Synthesis of a Peripherally Extended Triptycyl Group as an Aliphatic Steric Protection Group and Its Application to the Kinetic Stabilization of an Aliphatic Sulfenic Acid. Chem. Lett. 2018, 47, 425–428. DOI: 10.1246/cl.171230.
  • Fries, K. alpha-Anthraquinone Sulphuric Acid [from the Chemical Institute of the University of Marburg]. Ber. Dtsch. Chem. Ges. 1912, 45, 2965–2973. DOI: 10.1002/cber.19120450323.
  • Pal, B. C.; Uziel, M.; Doherty, D. G.; Cohn, W. E. Isolation and Characterization of a Pyrimidine Sulfenic Acid via Scission of the Sulfur-Sulfur Bond in the Methyl Analog of Bis(4-Thiouridine) Disulfide. J. Am. Chem. Soc. 1969, 91, 3634–3638. DOI: 10.1021/ja01041a036.
  • Heckel, A.; Pfleiderer, W. Lumazinesulfenates - a New Class of Stable Sulfenic Acids. Tetrahedron Lett. 1983, 24, 5047–5050. DOI: 10.1016/S0040-4039(00)94037-1.
  • Tripolt, R.; Belaj, F.; Nachbaur, E. Unexpectedly Stable Sulfenic Acid: 4,6-Dimethoxy-1,3,5-Triazine-2-Sulfenic Acid; Synthesis, Properties, Molecular and Crystal Structure. Z. Naturforsch., B: Chem. Sci. 1993, 48, 1212–1222. DOI: 10.1515/znb-1993-0909.
  • Machiguchi, T.; Hasegawa, T.; Otani, H.; Yamabe, S.; Mizuno, H. Tropothione S-Oxide: The First Example of a Sulfine Charge Reversion (Umpolung). J. Am. Chem. Soc. 1994, 116, 407–408. DOI: 10.1021/ja00080a061.
  • Fekner, T.; Baldwin, J. E.; Adlington, R. M.; Schofield, C. J. Unusually Stable Azetidinone Sulfenic Acids. Tetrahedron Lett. 1998, 39, 6983–6986. DOI: 10.1016/S0040-4039(98)01482-8.
  • Li, X.-B.; Xu, Z.-F.; Liu, L.-J.; Liu, J.-T. Synthesis and Identification of Solution-Stable Sulfenic Acids: Perfluoroalkanesulfenic Acids. Eur. J. Org. Chem. 2014, 2014, 1182–1188. DOI: 10.1002/ejoc.201301563.
  • Yeh, J. I.; Claiborne, A.; Hol,.; W. G.; J. Structure of the Native Cysteinesulfenic Acid Redox Center of Enterococcal NADH Peroxidase Refined at 2.8 Å Resolution. Biochemistry 1996, 35, 9951–9957. DOI: 10.1021/bi961037s.
  • Choi, H.-J.; Kang, S. W.; Yang, C.-H.; Rhee, S. G.; Ryu, S.-E. Crystal Structure of a Novel Human Peroxidase Enzyme at 2.0 Å Resolution. Nat. Struct. Biol. 1998, 5, 400–406. DOI: 10.1038/nsb0598-400.
  • Poor, C. B.; Chen, P. R.; Duguid, E.; Rice, P. A.; He, C. Crystal Structures of the Reduced, Sulfenic Acid, and Mixed Disulfide Forms of SarZ, a Redox Active Global Regulator in Staphylococcus aureus. J. Biol. Chem. 2009, 284, 23517–23524. DOI: 10.1074/jbc.m109.015826.
  • van Montfort, R. L. M.; Congreve, M.; Tisi, D.; Carr, R.; Jhoti, H. Oxidation State of the Active-Site Cysteine in Protein Tyrosine Phosphatase 1B. Nature (London, U. K.) 2003, 423, 773–777. DOI: 10.1038/nature01681.
  • Nakamura, T.; Yamamoto, T.; Abe, M.; Matsumura, H.; Hagihara, Y.; Goto, T.; Yamaguchi, T.; Inoue, T. Oxidation of Archaeal Peroxiredoxin Involves a Hypervalent Sulfur Intermediate. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 6238–6242. DOI: 10.1073/pnas.0709822105.
  • Sase, S.; Kimura, R.; Masuda, R.; Goto, K. Model Study on Trapping of Protein Selenenic Acids by Utilizing a Stable Synthetic Congener. New J. Chem. 2019, 43, 6830–6833. DOI: 10.1039/C9NJ01072F.
  • Sano, T.; Masuda, R.; Sase, S.; Goto, K. Isolable Small-Molecule Cysteine Sulfenic Acid. Chem. Commun. (Camb) 2021, 57, 2479–2482. DOI: 10.1039/d0cc08422k.
  • Ishii, A.; Matsubayashi, S.; Takahashi, T.; Nakayama, J. Preparation of a Selenenic Acid and Isolation of Selenoseleninates. J. Org. Chem. 1999, 64, 1084–1085. DOI: 10.1021/jo982039g.
  • Sase, S.; Kakimoto, R.; Goto, K. Synthesis of a Stable Selenoaldehyde by Self-Catalyzed Thermal Dehydration of a Primary-Alkyl-Substituted Selenenic Acid. Angew. Chem. Int. Ed. Engl. 2015, 54, 901–904. DOI: 10.1002/anie.201409485.
  • Yang, K. S.; Kang, S. W.; Woo, H. A.; Hwang, S. C.; Chae, H. Z.; Kim, K.; Rhee, S. G. Inactivation of Human Peroxiredoxin I during Catalysis as the Result of the Oxidation of the Catalytic Site Cysteine to Cysteine-Sulfinic Acid. J. Biol. Chem. 2002, 277, 38029–38036. DOI: 10.1074/jbc.M206626200.
  • Portillo-Ledesma, S.; Sardi, F.; Manta, B.; Tourn, M. V.; Clippe, A.; Knoops, B.; Alvarez, B.; Coitino, E. L.; Ferrer-Sueta, G. Deconstructing the Catalytic Efficiency of Peroxiredoxin-5 Peroxidatic Cysteine. Biochemistry 2014, 53, 6113–6125. DOI: 10.1021/bi500389m.
  • Chauvin, J.-P. R.; Pratt, D. A. On the Reactions of Thiols, Sulfenic Acids, and Sulfinic Acids with Hydrogen Peroxide. Angew. Chem. Int. Ed. Engl. 2017, 56, 6255–6259. DOI: 10.1002/anie.201610402.
  • Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. Tables of Bond Lengths Determined by x-Ray and Neutron Diffraction. Part 1. Bond Lengths in Organic Compounds. J. Chem. Soc, Perkin Trans. 2 1987, S1. DOI: 10.1039/p298700000s1.
  • Rehder, D. S.; Borges, C. R. Cysteine Sulfenic Acid as an Intermediate in Disulfide Bond Formation and Nonenzymatic Protein Folding. Biochemistry 2010, 49 (35), 7748–7755. Hill, B. G.; Bhatnagar, A. Protein S-Glutathiolation: Redox-Sensitive Regulation of Protein Function. J. Mol. Cell. Cardiol. 2012, 52 (3), 559–567. DOI: 10.1016/j.yjmcc.2011.07.009.
  • Zeida, A.; Trujillo, M.; Ferrer-Sueta, G.; Denicola, A.; Estrin, D. A.; Radi, R. Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols. Chem. Rev. 2019, 119, 10829–10855. DOI: 10.1021/acs.chemrev.9b00371.
  • Hagras, M. A.; Bellucci, M. A.; Gobbo, G.; Marek, R. A.; Trout, B. L. Computational Modeling of the Disulfide Cross-Linking Reaction. J. Phys. Chem. B 2020, 124, 9840–9851. DOI: 10.1021/acs.jpcb.0c07510.
  • Goto, K.; Shimada, K.; Nagahama, M.; Okazaki, R.; Kawashima, T. Reaction of Stable Sulfenic and Selenenic Acids Containing a Bowl-Type Steric Protection Group with a Phosphine. Elucidation of the Mechanism of Reduction of Sulfenic and Selenenic Acids. Chem. Lett. 2003, 32, 1080–1081. DOI: 10.1246/cl.2003.1080.
  • Masuda, R.; Kimura, R.; Karasaki, T.; Sase, S.; Goto, K. Modeling the Catalytic Cycle of Glutathione Peroxidase by Nuclear Magnetic Resonance Spectroscopic Analysis of Selenocysteine Selenenic Acids. J. Am. Chem. Soc. 2021, 143, 6345–6350. DOI: 10.1021/jacs.1c02383.
  • Masuda, R.; Goto, K. Modeling of Selenocysteinederived Reactive Intermediates Utilizing a Nano-Sized Molecular Cavity as a Protective Cradle. Methods Enzymol. 2022, 662, 331–361. DOI: 10.1016/bs.mie.2021.10.018.
  • Masuda, R.; Kuwano, S.; Sase, S.; Bortoli, M.; Madabeni, A.; Orian, L.; Goto, K. Model Study on the Catalytic Cycle of Glutathione Peroxidase Utilizing Selenocysteine-Containing Tripeptides: Elucidation of the Protective Bypass Mechanism Involving Selenocysteine Selenenic Acids. Bull. Chem. Soc. Jpn. 2022, 95, 1360–1379. DOI: 10.1246/bcsj.20220156.