167
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of functionalized sulfonamides as antitubercular agents

ORCID Icon, &
Pages 733-751 | Received 15 Feb 2023, Accepted 21 Mar 2023, Published online: 08 Apr 2023

References

  • Shambaugh, G. History of Sulfonamides. Arch. Otolaryngol. 1966, 83, 1–2. DOI: 10.1001/archotol.1966.00760020003001.
  • Biere, H.; Rufer, C.; Ahrens, H.; Loge, O.; Schröder, E. Blood Glucose Lowering Sulfonamides with Asymmetric Carbon Atoms. 2. J. Med. Chem. 1974, 17, 716–721. DOI: 10.1021/jm00253a011.
  • Werner, L. H.; Habicht, E.; Zergenyi, J. Sulfonamide Diuretics. ACS Symp. Ser. 1978, 83, 38–55. DOI: 10.1021/bk-1978-0083.ch004.
  • Rague, A.; Tidgewell, K. Pharmacophore Comparison and Development of Recently Discovered Long Chain Arylpiperazine and Sulfonamide Based 5-HT7 Ligands. Mini Rev. Med. Chem. 2018, 18, 552–560. DOI: 10.2174/1389557517666170913111533.
  • Courmont, P.; Morel, A.; Perier, E. Action Infertilisante in Vitro de Quelques Composés Arylsulfamidés via-a-Vis Des Cultures Homogenès de Bacilles de Koch. C. R. Sean. Soc. Biol. Fil. 1938, 129, 663–667.
  • Forgacs, P.; Wengenack, N. L.; Hall, L.; Zimmerman, S. K.; Silverman, M. L.; Roberts, G. D. Tuberculosis and Trimethoprim-Sulfamethoxazole. Antimicrob. Agents Chemother. 2009, 53, 4789–4793. DOI: 10.1128/aac.01658-08.
  • Ong, W.; Sievers, A.; Leslie, D. Mycobacterium Tuberculosis and Sulfamethoxazole Susceptibility. Antimicrob. Agents Chemother. 2010, 54, 2748–2749. DOI: 10.1128/aac.00029-10.
  • Wallace, R. J.; Wiss, K.; Bushby, M. B.; Hollowell, D. C. In Vitro Activity of Trimethoprim and Sulfamethoxazole against the Nontuberculous Mycobacteria. Rev. Infect. Dis. 1982, 4, 326–331. DOI: 10.1093/clinids/4.2.326.
  • Davies Forsman, L.; Schön, T.; Simonsson, U. S. H.; Bruchfeld, J.; Larsson, M.; Juréen, P.; Sturegård, E.; Giske, C. G.; Ängeby, K. Intra- and Extracellular Activities of Trimethoprim-Sulfamethoxazole against Susceptible and Multidrug-Resistant Mycobacterium Tuberculosis. Antimicrob. Agents Chemother. 2014, 58, 7557–7559. DOI: 10.1128/aac.02995-14.
  • Raoult, D. Old Antibiotics for Tuberculosis. Clin. Infect. Dis. 2017, 64, 983–983. DOI: 10.1093/cid/cix037.
  • Seddon, J. A.; Makhene, M. K.; Gumbo, T. Reply to Raoult. Clin. Infect. Dis. 2017, 64, 984–984. DOI: 10.1093/cid/cix038.
  • Vilchèze, C.; Jacobs, W. The Combination of Sulfamethoxazole, Trimethoprim, and Isoniazid or Rifampin is Bactericidal and Prevents the Emergence of Drug Resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2012, 56, 5142–5148. DOI: 10.1128/aac.00832-12.
  • Nayeem, N.; Denny, G. Synthesis of Some Mannich Bases from Sulphonamides and Benzothiazole Derivatives and Evaluation of Their anti-Tubercular Activity and Antimicrobial Activity. Der. Pharm. Chem. 2012, 4, 1277–1282.
  • Inoyama, D.; Awasthi, D.; Capodagli, G. C.; Tsotetsi, K.; Sukheja, P.; Zimmerman, M.; Li, S.-G.; Jadhav, R.; Russo, R.; Wang, X.; et al. A Preclinical Candidate Targeting Mycobacterium tuberculosis KasA. Cell Chem. Biol. 2020, 27, 560–570.e10. DOI: 10.1016/j.chembiol.2020.02.007.
  • Mondal, S. Sulfonamide Synthesis under Green Conditions. Synth. Commun. 2021, 51, 1023–1044. DOI: 10.1080/00397911.2020.1870238.
  • Mondal, S.; Malakar, S. Synthesis of Sulfonamides and Their Synthetic and Therapeutic Applications: Recent Advances. Tetrahedron 2020, 76, 31662. DOI: 10.1016/j.tet.2020.131662.
  • Puccetti, L.; Fasolis, G.; Cecchi, A.; Winum, J.-Y.; Gamberi, A.; Montero, J.-L.; Scozzafava, A.; Supuran, C. T. Carbonic Anhydrase Inhibitors: Synthesis and Inhibition of Cytosolic/Tumor-Associated Carbonic Anhydrase Isozymes I, II, and IX with Sulfonamides Incorporating Thioureido-Sulfanilyl Scaffolds. Bioorg. Med. Chem. Lett. 2005, 15, 2359–2364. DOI: 10.1016/j.bmcl.2005.02.087.
  • Bollikolla, H. B.; Pericherla, V.; S.; Saketi, J. M.; Neduri, V. B.; Kurmarayuni, C. M.; Gottumukkala, V. S. Synthesis of New Hispolon Derived Pyrazole Sulfonamides for Possible Antitubercular and Antimicrobial Agents. J. Mex. Chem. Soc. 2021, 65, 237–246. DOI: 10.29356/jmcs.v65i2.1458.
  • Santa Maria, J. P.; Park, Y.; Yang, L.; Murgolo, N.; Altman, M. D.; Zuck, P.; Adam, G.; Chamberlin, C.; Saradjian, P.; Dandliker, P.; et al. Linking High-Throughput Screens to Identify MoAs and Novel Inhibitors of Mycobacterium tuberculosis Dihydrofolate Reductase. ACS Chem. Biol. 2017, 12, 2448–2456. DOI: 10.1021/acschembio.7b00468.
  • Zhao, Y.; Shadrick, W. R.; Wallace, M. J.; Wu, Y.; Griffith, E. C.; Qi, J.; Yun, M.-K.; White, S. W.; Lee, R. E. Pterin-Sulfa Conjugates as Dihydropteroate Synthase Inhibitors and Antibacterial Agents. Bioorg. Med. Chem. Lett. 2016, 26, 3950–3954. DOI: 10.1016/j.bmcl.2016.07.006.
  • Griffith, E. C.; Wallace, M. J.; Wu, Y.; Kumar, G.; Gajewski, S.; Jackson, P.; Phelps, G. A.; Zheng, Z.; Rock, C. O.; Lee, R. E.; et al. The Structural and Functional Basis for Recurring Sulfa Drug Resistance Mutations in Staphylococcus Aureus Dihydropteroate Synthase. Front. Microbiol. 2018, 9, 1369. DOI: 10.3389/fmicb.2018.01369.
  • Romano, K.; Ali, A.; Royer, W.; Schiffer, C. Drug Resistance against HCV NS3/4A Inhibitors is Defined by the Balance of Substrate Recognition versus Inhibitor Binding. Proc. Natl. Acad. Sci. USA 2010, 107, 20986–20991. S20986/1-S20986/5 DOI: 10.1073/pnas.1006370107.
  • Lichter, J.; Golka, K.; Sim, E.; Blömeke, B. Recent Progress in N-Acetyltransferase Research: 7th International Workshop on N-Acetyltransferases (NAT): Workshop Report. Arch. Toxicol. 2017, 91, 2715–2718. DOI: 10.1007/s00204-017-1957-2.
  • Sim, E.; Lack, N.; Wang, C.-J.; Long, H.; Westwood, I.; Fullam, E.; Kawamura, A. Arylamine N-Acetyltransferases: Structural and Functional Implications of Polymorphisms. Toxicology 2008, 254, 170–183. DOI: 10.1016/j.tox.2008.08.022.
  • Liu, C.; Liu, H.; Ge, B. Innate Immunity in Tuberculosis: Host Defense vs Pathogen Evasion. Cell Mol. Immunol. 2017, 14, 963–975. DOI: 10.1038/cmi.2017.88.
  • Sim, E.; Sandy, J.; Evangelopoulos, D.; Fullam, E.; Bhakta, S.; Westwood, I.; Krylova, A.; Lack, N.; Noble, M. Arylamine N-Acetyltransferases in Mycobacteria. Curr. Drug Metab. 2008, 9, 510–519. DOI: 10.2174/138920008784892100.
  • Hearn, M.; Cynamon, M. In Vitro and in Vivo Activities of Acylated Derivatives of Isoniazid against Mycobacterium tuberculosis. Drug Des. Discov. 2003, 18, 103–108. DOI: 10.3109/10559610390450705.
  • Hearn, M.; Cynamon, M. Design and Synthesis of Antituberculars: Preparation and Evaluation against Mycobacterium tuberculosis of an Isoniazid Schiff Base. J. Antimicrob. Chemother. 2004, 53, 185–191. DOI: 10.1093/jac/dkh041.
  • Hearn, M. J.; Cynamon, M. H.; Chen, M. F.; Coppins, R.; Davis, J.; Joo-On Kang, H.; Noble, A.; Tu-Sekine, B.; Terrot, M. S.; Trombino, D.; et al. Preparation and Antitubercular Activities in Vitro and in Vivo of Novel Schiff Bases of Isoniazid. Eur. J. Med. Chem. 2009, 44, 4169–4178. DOI: 10.1016/j.ejmech.2009.05.009.
  • Zinniel, D.; Sittiwong, W.; Marshall, D.; Rathnaiah, G.; Sakallioglu, I.; Powers, R.; Dussault, P. H.; Barletta, R. G. Novel Amphiphilic Cyclobutene and Cyclobutane cis-C18 Fatty Acid Derivatives Inhibit Mycobacterium Avium Subsp. Paratuberculosis Growth. Vet. Sci. 2019, 6, 46. DOI: 10.3390/vetsci6020046.
  • Wambaugh, M.; Shakya, V.; Lewis, A.; Mulvey, M.; Brown, J. High-Throughput Identification and Rational Design of Synergistic Small-Molecule Pairs for Combating and Bypassing Antibiotic Resistance. PLoS Biol. 2017, 15, e2001644/1–e2001644/33. DOI: 10.1371/journal.pbio.2001644.
  • Ghasemi, M.; Kowsari, E.; Hosseini, S. Catalytic Activity of Magnetic Fe3O4@Diatomite Earth and Acetic Acid for the N-Acylation of Sulfonamides. Tetrahedron Lett. 2016, 57, 387–391. DOI: 10.1016/j.tetlet.2015.12.044.
  • Novacek, A. Acylation of Some Urea Derivatives. Collect. Czech. Chem. Commun. 1967, 32, 1712–1718. DOI: 10.1135/cccc19671712.
  • Matsukawa, T.; Ohta, B. Syntheses of Pyrimidine Compounds. IV. Syntheses of Sulfaminopyrimidines. Yakugaku Zasshi 1949, 69, 491–493. DOI: 10.1248/yakushi1947.69.11_491.
  • Sprague, J. Sulfonamide Derivatives. U.S. Patent 2,494,524, February 6, 1950.
  • Sprague, J. Recovery of Sulfamethazine and Sulfaguanidine. U.S. Patent 2,407,966, September 17, 1946.
  • Tsuda, K.; Sakamoto, S., Syntheses of Sulfanilamides. V. Disulfanilyl Derivatives of 2-Aminothiazole. Yakugaku Zasshi 1949, 69, 165–171. DOI: 10.1248/yakushi1947.69.4_165.
  • American Chemical Society. Chemical Abstracts Service, SciFinder, Spectrum ID BR076533 for CAS Registry Number 127-176-4.
  • Irani, R. A Simple Method of Preparation of N4-Substituted Disulfanilamido Derivatives of Some Dibasic Acids. Curr. Sci. 1945, 14, 46–47.
  • Schwarz, R.; Kristen, C. Behavior of Sulfonamides on Sterilization in Hot Air. Sci. Pharm. 1965, 33, 145–153.
  • American Chemical Society. Chemical Abstracts Service, SciFinder, Spectrum ID NIDA 10425 for CAS Registry Number 121–161-9.
  • Drain, D.; Martin, D.; Mitchell, B.; Seymour, D.; Spring, F. 4-Aminosalicylic Acid and Its Derivatives. J. Chem. Soc. 1949, 1498–1503. DOI: 10.1039/jr9490001498.
  • Guo, M. 4-Acetamido-N-(4-Methylpiperazinyl)Benzenesulfonamide Monohydrate. Acta Crystallogr. 2004, E60, o574–o575. DOI: 10.1107/s1600536804005446.
  • Patki, V.; Shirsat, M. Chemotherapy of Intestinal Infections. I. Synthesis of N4-Acyl Derivatives of N1-Substituted Sulfanilamides. J. Sci. Ind. Res. 1959, 18C, 113–116.
  • Tsuruoka, M. The Relation between Chemical Structure and Antibacterial Effect of Sulfa Drugs. I. The Antibacterial Effect of Sulfa Drugs. Yakugaku Zasshi 1951, 71, 336–343. DOI: 10.1248/yakushi1947.71.5_336.
  • Ueda, T.; Kato, S.; Toyoshima, S. 2-N1-Acylsulfanilamidothiazole. Japan Patent 36007186, June 10, 1961.
  • Rajagopalan, S. Bacterial Chemotherapy. III Synthesis of Possible Lipophilic Chemotherapeuticals of the Sulfanilamide Group. Proc. Indian Acad. Sci. 1943, 18A, 108–112. DOI: 10.1007/bf03051263.
  • Melegari, M.; Vampa, G.; Benedetti, L.; De Benedetti, P. Preparation and Spectroscopic Behavior of Acetyl Derivatives of Sulphonamides. Farmaco Sci. 1976, 31, 183–193.
  • Lo, C.; Chu, L. N1-Acetyl-N4-Benzoylsulfanilamide. J. Am. Chem. Soc. 1944, 66, 660–661. DOI: 10.1021/ja01232a600.
  • Hearn, M.; Chen, M.; Cynamon, M.; Wang’ondu, R.; Webster, E. Preparation and Properties of New Antitubercular Thioureas. J. Sulfur Chem. 2006, 27, 149–164. DOI: 10.1080/17415990600576826.
  • Heinrichs, M. T.; May, R. J.; Heider, F.; Reimers, T.; B Sy, S. K.; Peloquin, C. A.; Derendorf, H. Mycobacterium tuberculosis Strains H37ra and H37rv Have Equivalent Minimum Inhibitory Concentrations to Most Antituberculosis Drugs. Int. J. Mycobacteriol. 2018, 7, 156–161. DOI: 10.4103/ijmy.ijmy_33_18.
  • Hearn, M.; Wang, T.; Cynamon, M. Synthesis and Characterization of New 1-(4-Methylpiperazin-1-yl)Thioureas as Potential Antitubercular Agents. J. Heterocycl. Chem. 2017, 54, 720–727. DOI: 10.1002/jhet.2551.
  • Castle, R.; Witt, N. The Polymorphism of Sulfapyridine. J. Am. Chem. Soc. 1946, 68, 64–66. DOI: 10.1021/ja01205a020.
  • Hudzicki, J. American Society for Microbiology Kirby-Bauer Disk Diffusion Susceptibility Test Protocol [Internet], 2009. https://asm.org/Protocols/Kirby-Bauer-Disk-Diffusion-Susceptibility-Test-Pro (accessed Mar. 15, 2023).
  • Shoen, C. M.; DeStefano, M. S.; Sklaney, M. R.; Monica, B. J.; Slee, A. M.; Cynamon, M. H. Short-Course Treatment Regimen to Identify Potential Antituberculous Agents in a Murine Model of Tuberculosis. J. Antimicrob. Chemother. 2004, 53, 641–645. DOI: 10.1093/jac/dkh124.
  • Vestal, A. Procedures for the Isolation and Identification of Mycobacteria. Atlanta (GA): Public Health Service National Communicable Disease Center Laboratory Division (US); 1969. (PHSNCDC publication; no. 1995, pp. 113–115). https://books.google.com/books/about/Procedures_for_the_Isolation_and_Identif.html?id=R7eYwSeIBqUC (accessed Mar. 15, 2023)
  • Wong, C.; Palmer, G.; Cynamon, M. In Vitro Susceptibility of Mycobacterium tuberculosis, Mycobacterium bovis and Mycobacterium kansasii to Amoxycillin and Ticarcillin in Combination with Clavulanic Acid. J. Antimicrob. Chemother. 1988, 22, 863–866. DOI: 10.1093/jac/22.6.863.
  • Manabe, Y. C.; Dannenberg, A. M.; Tyagi, S. K.; Hatem, C. L.; Yoder, M.; Woolwine, S. C.; Zook, B. C.; Pitt, M. L. M.; Bishai, W. R. Different Strains of Mycobacterium tuberculosis Cause Various Spectrums of Disease in the Rabbit Model of Tuberculosis. Infect. Immun. 2003, 71, 6004–6011. DOI: 10.1128/iai.71.10.6004-6011.2003.
  • Meltzer, R. I.; Lewis, A. D.; McMILLAN, F. H.; Genzer, J. D.; Leonard, F.; King, J. A. Antitubercular Substances. III. Nonpyridinoid Heterocyclic Hydrazides. J. Am. Pharm. Assoc. Am. Pharm. Assoc. 1953, 42, 594–600. DOI: 10.1002/jps.3030421003.
  • Predict NMR spectra. Cheminfo.org [Internet]. http://www.cheminfo.org/Spectra/NMR/Predictions/1H_Prediction/index.html (accessed March 15, 2023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.